Composite Materials for Wind Blades: Current Performance and Future Directions
1. PPG Wind Energy
2. Evolution of wind blade materials
3. The current state – performance review
4. Alternatives for stronger, stiffer blades
5. The future state - long term goals and new developments
PPG Wind Energy

1. PPG Wind Energy

- Offering a multitude of products for wind turbines
 - Fiber glass for blades, nacelles
 - Coatings for blades, towers
- World leader in fiber glass
 - Established in wind energy for 15+ years
 - Production and sales from 3 major continents
 - Hybon® 2002/2001 recognized product in wind energy blades
 - Specified in blades from most major manufacturers around the world
 - Continuing to develop new products that will enhance wind energy production for the future
1. PPG Wind Energy

Hybon® 2002/2001

- Specified and used at most wind turbine companies
- Designed for multiple resin compatibility

Hybon® 2026

- Multiple resin compatibility
- Enhanced processing characteristics
- Improved strength and fatigue life

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength</th>
<th>Flexural Strength</th>
<th>Short Beam Shear Strength</th>
<th>FWF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>MPa</td>
<td>MPa</td>
<td>%</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>ISO 527-5</td>
<td>ISO 14125</td>
<td>ISO 14130</td>
<td></td>
</tr>
<tr>
<td>Sample Prep</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Hybon® 2002</td>
<td>1107</td>
<td>1221</td>
<td>64</td>
<td>74.8</td>
</tr>
<tr>
<td>Hybon® 2026</td>
<td>1148</td>
<td>1339</td>
<td>67</td>
<td>75.6</td>
</tr>
</tbody>
</table>

A – Unidirectional infused panels, Hexion RIM 135 epoxy
B - Filament wound cylinders per ASTM D 2291
Fiber design at the nano-scale level drives performance through the value chain.

1. Fiber/Fabric Processing
2. Infusion, fatigue, weight

1 nm 1 μm 1 mm 1 m 100 m
2. Evolution of wind blade materials

Input materials
- Core materials (balsa, PVC, PU, etc.)
- Skin materials (multiaxial fabrics NCF)
- Spar materials (UD, multiaxial fabrics NCF)
- Root materials (roving, multiaxial fabrics)
- Resin systems (DGEBA, VE, PE, …)

ATP/AFP
- Dry fiber
- Impregnated tape

Improved Processing & Performance

Hand layup
Prepreg
Vacuum Infusion
Wet layup
Wet winding
3. The current state – performance review

- SNL/MSU/DOE database
- Optidat Database
- PPG internal test data
- Other public information

PPG / DOE database

Static Properties

Fatigue Properties
3. The current state – performance review

- Prepreg based materials
 - UD, Biax

- Infusion grade materials
 - UD, Biax, Triax

<table>
<thead>
<tr>
<th>APPLICATION/REINFORCEMENT</th>
<th>UD</th>
<th>BIAX 0/90 – 45</th>
<th>TRIAX</th>
<th>ROVING</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPARCAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td>16</td>
<td>Tensile strength 90°: 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company:</td>
<td>SAERTEX</td>
<td>Tensile modulus 90°: 17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>process:</td>
<td>Infusion</td>
<td>Compressive strength 90°: 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fiber:</td>
<td>Glass</td>
<td>Shear strength:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIN:</td>
<td>Epoxy</td>
<td>Shear modulus:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>designation:</td>
<td>QQ1 (ID 7 & ID 10)</td>
<td>FWF:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sample ID:</td>
<td>9281-9313 9314-9882</td>
<td>FWF: 58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application:</td>
<td>SPAR</td>
<td>R: 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAW:</td>
<td>1786</td>
<td>Frequency:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>layup:</td>
<td>[+-45/(0)2]</td>
<td>Cycles to failure:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength 0°:</td>
<td>843</td>
<td>S-N Curve:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile modulus 0°:</td>
<td>33.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive strength 0°:</td>
<td>687</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. The current state – performance review

Uni-directional Prepreg

Tensile Strength

- **Carbon-Epoxy**: 1767 MPa, 2004 MPa, 2020 MPa, 2504 MPa
- **E-Glass Epoxy**: 1767 MPa, 1750 MPa, 2000 MPa, 2500 MPa

Uni-directional Prepreg

Tensile Modulus

- **Carbon-Epoxy**: 1264 GPa, 129.7 GPa, 139.3 GPa, 120.0 GPa
- **E-Glass Epoxy**: 1182 GPa, 140.0 GPa

Uni-directional Prepreg

Compressive Strength

- **Carbon-Epoxy**: 1359 MPa, 1250 MPa, 966 MPa, 790 MPa
- **E-Glass Epoxy**: 1182 MPa, 140.0 MPa

Uni-directional Prepreg

Compressive Modulus

- **Carbon-Epoxy**: 139.3 GPa, 129.7 GPa, 1182 GPa
- **E-Glass Epoxy**: 47.7 GPa, 45.1 GPa
3. The current state – performance review

Double Bias Prepreg Static Properties

- Tensile Modulus
 - Carbon-Epoxy: 123 GPa
 - E-Glass Epoxy: 158, 145, 132 GPa

- Tensile Strength
 - Carbon-Epoxy: 15.0 MPa
 - E-Glass Epoxy: 18.2, 16, 14.7 MPa
3. The current state – performance review

Triax Infusion

Tensile Strength (MPa)

- E-Glass Epoxy: 951, 867, 785
- E-Glass Vinyl Ester: 809
- R-Glass Epoxy: 923

Compressive Strength (MPa)

- E-Glass Epoxy: 833, 693, 580
- E-Glass Vinyl: 670

Tensile Modulus (GPa)

- E-Glass: 34.3, 29.0, 24.5
- R-Glass Epoxy: 30.50, 34.5

Enabling Energy

Fiber Glass and Coatings for Wind Power

Triaxial Infusion Static Properties
How to drive performance?

4. Alternatives for stronger, stiffer blades

1. Design/Geometrical approach (Increase Moment of Inertia – stiffness)

2. **Material performance enhancements (strength and/or stiffness)**
 1. Sizing Chemistry (strength)
 2. Fiber Composition (strength + stiffness)
 3. Fiber Volume Fraction (strength + stiffness)
 4. Defect reduction/prevention (strength*)

*at component level
Alternatives for stronger, stiffer blades:

Sizing Chemistry

- Green = HYBON 2026
- Red = HYBON 2002

~10% Improvement
~2x on absolute scale
Alternatives for stronger, stiffer blades:

- Sizing Chemistry

Montana State results

- Vectorply E-LT 5500 using Hybon® 2026
- 4400TEX input in zero direction
- Supports value of Hybon® 2026

Resin: EP = EPON 826
Method: SBS = ASTM D2344
All testing on 1984 TEX (250 Yield) rovings
4. Alternatives for stronger, stiffer blades: Increase FVF

Advantages:
- Avenue for increasing spar cap stiffness (reduction in tip deflection)
- Achievable with existing materials

Disadvantages:
- Effect on long term performance of composite laminate (fatigue)?
- Increase in weight
- Difficulties in processing (dry spots)
4. Alternatives for stronger, stiffer blades: Increase FVF

- Circular cross section spar
- Parameters include
 - Outside Diameter (OD), Inside Diameter (ID)
 - Spar length (L)
 - Elastic Modulus of Fiber (Ef)
 - Fiber Volume Fraction (FVF)

OD = 0.6 m, ID = 0.55 m
L = 60 m
Ef = 79 GPa (Impregnated strand tensile)
FVF = 50%
Modulus translation efficiency = 97%
Effect of FVF on tip deflection of spar, self weight

4. Alternatives for stronger, stiffer blades:
 Increase FVF

Common design space (E-glass)
4. Alternatives for stronger, stiffer blades: Increase FVF

What happens at 60% FVF?
4. Alternatives for stronger, stiffer blades: Fiber Composition

<table>
<thead>
<tr>
<th>Fiber Types</th>
<th>E glass</th>
<th>R glass</th>
<th>S glass</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>2.55 – 2.64</td>
<td>2.55</td>
<td>2.46 - 2.49</td>
<td>1.7</td>
</tr>
<tr>
<td>Young’s Modulus (GPa)</td>
<td>70 – 77</td>
<td>84-86</td>
<td>86 – 90</td>
<td>220</td>
</tr>
<tr>
<td>Pristine Strength (MPa)</td>
<td>3450 – 3790*</td>
<td>4400*</td>
<td>4590 – 4830</td>
<td>3800**</td>
</tr>
<tr>
<td></td>
<td>2800**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3900**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Strain (%)</td>
<td>4.5 – 4.9</td>
<td></td>
<td>5.4 – 5.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*pristine
**impregnated strand per ASTM D2343
4. Alternatives for stronger, stiffer blades: Fiber Composition

As Fiber Modulus Increases, deflection is reduced but cost per lb increases...

![Graph showing self weight tip deflection and cost for different materials.](image)
Composition shift E to R

4. Alternatives for stronger, stiffer blades: Fiber Composition

<table>
<thead>
<tr>
<th>Fiber Composition</th>
<th>49%</th>
<th>51%</th>
<th>53%</th>
<th>55%</th>
<th>57%</th>
<th>59%</th>
<th>61%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-glass</td>
<td>0.280</td>
<td>0.277</td>
<td>0.274</td>
<td>0.271</td>
<td>0.268</td>
<td>0.265</td>
<td>0.262</td>
</tr>
<tr>
<td>R-Glass</td>
<td>0.260</td>
<td>0.256</td>
<td>0.253</td>
<td>0.250</td>
<td>0.246</td>
<td>0.243</td>
<td>0.240</td>
</tr>
</tbody>
</table>

FVF (%)

Graph showing self-weight tip deflection (m) vs. FVF (%) for E-glass and R-Glass.
5. The future state – long-term goals and new developments

- Faster, easier processing
 - Faster wet-out for liquid molding
 - Reduced probability of porosity in laminates
 - Reduced abrasion

- Defect reduction
 - Material forms adequate for FP/ATP (process driven)
 - Resin specific sizing technology (innovative film former chemistry)
 - Higher Tensile strength
 - Higher SBSS and strength retention
 - Improved fatigue performance
New material forms and process development

5. The future state – long-term goals and new developments

• ATL/FP grade materials
 – Equilibrium between performance and cost
 – Material tolerances
 – Paper requirements
 – Impregnation levels and slitting characteristics
 – Tack
 – In situ consolidation
SANDEEP VENNAM, JIM WATSON AND CHERYL RICHARDS from PPG Wind Energy

Acknowledgement: “This material is partly based upon work supported by the Department of Energy under Award Number(s) [DE-EE0001373].”

Disclaimer: “Part of this presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
THANK YOU FOR YOUR ATTENTION