Blade Design with Engineered Cores Materials

Fred Stoll
Scott Campbell
Rob Banerjee

WebCore Technologies, Inc., Miamisburg, OH, U.S.A.

Dayton Griffin

Global Energy Concepts, Seattle, WA, U.S.A.

2008 Wind Turbine Blade Workshop
Albuquerque, NM, May 12-14, 2008

Support provided by:
U.S. Department of Energy Phase I SBIR Project, and
Ohio Research Commercialization Program
Sandwich Construction in Large Blades

As blade sizes have grown, sandwich construction has become prevalent.

Core Selection:
- Affects weight, cost, and structural performance
- Core optimization is a natural part of blade design optimization
TOPICS

• Introduction to TYCOR® Engineered Core Materials
• Core Performance Issues in Blades
• Experimental and Analytical Comparison of TYCOR, PVC foam and Balsa Core Materials
 – Design for Buckling Resistance
 – Local Strength Measurements of Sandwich Laminates
 – Weight and Cost
TYCOR® Fiber Reinforced Core (FRC)

- FRC has Web-Core Construction
 - Glass-fiber composite webs
 - Low-density (30 kg/m³) polyisocyanurate foam
- Unidirectional or Bi-directional Web Orientation
- High specific stiffness and strength

Sandwich Panel with Unidirectional FRC

Sandwich Panel Interior with “GX”-style Bi-Directional FRC
“GX”-Style FRC for Infusion Molded Sandwich Structures

- “Engineered Core:” Orthotropic stiffness and strength properties can be tailored independently in \(L \) and \(T \) directions.

Diagram:
- E-glass mat
- Laminating adhesive
- Precursor/tooling foam
- E-glass roving
- High-Speed Winding Process
- Fabric Lay-up and Infusion Molding
- Sheet consolidation process
- Low-Cost TYCOR® Core Preform Sheets
FRC Processing

- **Conformability:** Conforms to characteristic blade skin curvatures
- **Machining:** Dry preform cuts easily with band saw, table saw, utility knife, etc.
- **Infusion Molding:** Works well in vacuum infusion with single-side feed due to through-thickness porosity
- **Sheet Size:** Large sheet size minimizes handling (e.g. $1.2m \times 2.4m$ or larger)
Status of FRC in Blades

• WebCore supported Global Energy Concepts and TPI Composites in DOE SBIR Project, fabricating two MW-scale research wind turbine blades featuring TYCOR core.
 – All TYCOR kitting was performed on-site with simple shop tools (table saw, utility knives).
 – All eight lay-ups and molding-infusions went smoothly.

• FRC is nearing certification for use in shear webs, replacing balsa for a 2+MW turbine system

• Completed initial feasibility study of FRC as complete-blade PVC foam replacement for second wind turbine manufacturer. Showed significant cost and weight reductions.
Characteristic Sandwich Loading

- **Local Sandwich Loading** - predominantly in-plane
- **Face Laminates** - designed to provide strength and stiffness for global blade response
- **Sandwich Construction** - serves to increase local bending stiffness of laminates to control local bending and suppress buckling
- **Core Loading** - minimal direct loading traditional sense (Transverse shear, through-thickness compression/tension)
Core-Related Structural Performance Considerations

• Global or Panel-Level Buckling
 – Core affects buckling design margins, must meet minimum requirements
 – Assessed analytically

• Local Sandwich Laminate Strength (In-Plane)
 – “Don’t mess things up” - Core must enable face laminates to achieve required static and fatigue strength

• Sandwich Transitions
 – Laminate strength at core thickness transitions
 – Laminate strength at core closeouts
In-Plane Strength Example: Local Failure Modes for Edgewise Compression

Study: Experimental and Analytical Comparison of FRC, PVC foam and Balsa Core Materials

Alternate core materials:
- Low-density PVC foam (60 kg/m³)
- Medium-density end-grain balsa

Compare:
1. Blade buckling resistance
2. Local strength of sandwich laminates under in-plane loading
3. Core weight and cost
Blade Buckling Analysis

- Core Material Properties
 - A general core material is orthotropic
 - Transverse shear modulii have large effect on global buckling

Descriptions of Cores Used in Study

<table>
<thead>
<tr>
<th>Core</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-density PVC Foam</td>
<td>Airex C70.55, 60 kg/m³ density</td>
</tr>
<tr>
<td>Medium-density Balsa</td>
<td>ProBalsa® Standard, 155 kg/m³ density, “Minimum” properties</td>
</tr>
<tr>
<td>TYCOR_uni H</td>
<td>High-strength uni-directional FRC</td>
</tr>
<tr>
<td>TYCOR_GX L</td>
<td>Lower-property GX FRC</td>
</tr>
<tr>
<td>TYCOR_GX H</td>
<td>Higher-property GX FRC</td>
</tr>
</tbody>
</table>

Orthotropic Elastic Input Parameters for FEA

<table>
<thead>
<tr>
<th>Material</th>
<th>Extens. Stiffness (Gpa)</th>
<th>Shear Stiffness (Gpa)</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-TLX_3300</td>
<td>18.28</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>PVC Foam</td>
<td>0.045</td>
<td>0.045</td>
<td>0.069</td>
</tr>
<tr>
<td>Balsa</td>
<td>0.400</td>
<td>0.400</td>
<td>2.000</td>
</tr>
<tr>
<td>TYCOR_uni H</td>
<td>0.248</td>
<td>0.016</td>
<td>0.248</td>
</tr>
<tr>
<td>TYCOR_GX L</td>
<td>0.145</td>
<td>0.069</td>
<td>0.269</td>
</tr>
<tr>
<td>TYCOR_GX H</td>
<td>0.207</td>
<td>0.076</td>
<td>0.345</td>
</tr>
</tbody>
</table>
Flat-Plate Buckling Analysis
Uniaxial Compression of Plate Strip

- **Goal:** Simulate a strip of *blade skin*, explore effects of orthotropic core transverse shear moduli, G_{xz}, G_{yz}
- **Analysis method:** Double-Fourier series solution for thin-faced sandwich
- **Laminate:** Core thickness=37mm, Face thickness=2.6mm of E-TLX 3300 ([0/±45]), Width $b=100$ mm

⇒ As G decreases, buckling load decreases
⇒ *FRC and balsa* can be used at lower thicknesses than low density foams
⇒ *For Orthotropic core*, G_{xz} (compression axis) should be greater than G_{yz}
⇒ G_{yz} can be reduced somewhat lower than G_{xz} (for weight and cost reduction) with only small loss in buckling performance
Flat-Plate Buckling Analysis
In-Plane Shear of Shear-Web Laminate

- Simulate a Shear-Web laminate under in-plane shear using FEA
- Rectangular panel, simple edge support, 1m wide by 5m long
- Demonstrate sensitivity of buckling to transverse shear modulus of core, G
- Core thickness=50mm, Face thickness=1.5mm, +-45° E-glass reinforcement

\Rightarrow Buckling resistance decreases as G decreases
Blade Buckling Analysis

- Blade shape and design loads from conceptual design study conducted by GEC under U.S. DOE-sponsored WindPACT program
 - Fiberglass blade, 43.5m long
 - 2.5MW turbine
- NuMAD (Sandia Nat’l Lab) preprocessor with ANSYS FEA code.
- Targeted buckling studies at 25%, 50%, 75% (not completed) span stations
- Focused on aft-skin buckling performance

<table>
<thead>
<tr>
<th>r/R</th>
<th>r (m)</th>
<th>Airfoil</th>
<th>Chord (m)</th>
<th>Design Loads (kN-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>1.125</td>
<td>Cylinder</td>
<td>2.25</td>
<td>Flap: 6,763.5, Edge: 3,172.5</td>
</tr>
<tr>
<td>0.250</td>
<td>11.250</td>
<td>DU97-W-300</td>
<td>3.60</td>
<td>Flap: 3,982.5, Edge: 1,552.5</td>
</tr>
<tr>
<td>0.500</td>
<td>22.500</td>
<td>DU91-W2-250</td>
<td>2.60</td>
<td>Flap: 1,890.0, Edge: 545.3</td>
</tr>
<tr>
<td>0.750</td>
<td>33.750</td>
<td>DU93-W-210</td>
<td>1.60</td>
<td>Flap: 448.1, Edge: 96.2</td>
</tr>
</tbody>
</table>

* Peak value of negative edge bending (trailing edge in compression)
Blade Buckling Study

- Approach
 - Apply design load (moment) to constant-cross-section model of corresponding blade station
 - Vary core thickness in the aft skins to determine minimum core thickness that satisfies required buckling margin
Blade Buckling Study - 25% Span Station Results

- GX-FRC designs perform similarly to balsa
- GX-FRC enables 11% thickness reduction compared to PVC foam
- Uni-FRC requires higher thickness

![Graphs showing buckling design margin versus core thickness and buckling-critical core thickness]
Buckling Study Comments

• For buckling-critical laminates, FRC and balsa can be used at reduced thickness compared to PVC foam

• Future FEA Blade Analysis:
 – Expand to additional span stations
 – Expand to additional core areas (shear webs, forward skins)

• Challenges:
 – Finite element modeling approaches to account for transverse shear effects
 – Numerical problems in some design regimes (questionable local buckling modes)
Experimental Core Comparisons - Structural Performance, Weight, Cost

- **Two laminate styles:**
 - **Shear Web:**
 - 50 mm rigid cores (GXW1, balsa, PVC foam)
 - 2-ply and 3-ply faces, Double bias E-glass fabric [45/-45/mat], 0.69 mm/ply
 - Vinyl ester resin (in-plane shear) and Epoxy resin (edgewise compression)
 - **Blade Skins:**
 - 25mm contourable cores (GXW2, balsa, PVC foam)
 - 2-ply and 3-ply faces, Tri-axial E-glass fabric [0/±45], 0.51mm/ply
 - Epoxy resin

- **Total of 12 laminate designs molded and tested**
- **Comparisons**
 - Local in-plane compressive and shear strength of laminates
 - Core weight and cost including absorbed resin
Experimental Core Comparisons - Structural Performance, Weight, Cost

- Five specific GX FRC designs investigated

<table>
<thead>
<tr>
<th>FRC Design ID</th>
<th>Background</th>
<th>L Webs</th>
<th>T Webs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spacing (mm)</td>
<td>Fiber weight (gr/m²)</td>
<td>Fiber angle</td>
</tr>
<tr>
<td>GXW1</td>
<td>For shear webs as balsa replacement</td>
<td>50</td>
<td>550</td>
</tr>
<tr>
<td>GXW2</td>
<td>Modified GXW1 for reduced cost</td>
<td>50</td>
<td>550</td>
</tr>
<tr>
<td>GXW4</td>
<td>Improved edgewise compression, Light</td>
<td>38</td>
<td>400</td>
</tr>
<tr>
<td>GXW5</td>
<td>Improved edgewise compression, Heavy</td>
<td>38</td>
<td>550</td>
</tr>
<tr>
<td>GX-Light</td>
<td>For shear webs as PVC-foam replacement</td>
<td>50</td>
<td>300</td>
</tr>
</tbody>
</table>
In-Plane Shear Strength of Shear-Web Laminates

- Primary loading for shear-web laminates
- Single-specimen values

⇒ GXW1 FRC performed similarly to PVC foam and balsa

Test Configuration
Bonded edge doublers
Specimen: 305 mm square
Open area: 230 mm square

In-Plane Local Shear Strength

<table>
<thead>
<tr>
<th>Material</th>
<th>2-Ply Faces</th>
<th>3-Ply Faces</th>
<th>4-Ply Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC foam</td>
<td>576</td>
<td>899</td>
<td>935</td>
</tr>
<tr>
<td>Balsa</td>
<td>660</td>
<td>824</td>
<td>664</td>
</tr>
<tr>
<td>GXW1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edgewise Compression Strength of Shear-Web Laminates

- Important for compatibility of shear web with spar cap compression
 ⇒ *GXW1 performance comparable to PVC foam*
 ⇒ *In practice: Design to strain requirement*

Test Configuration
Specimen: 250mm x 150mm
Gage length: 150mm

Local Edgewise Compressive Strength (3-Specimen Averages)

<table>
<thead>
<tr>
<th>Material</th>
<th>2-Ply Faces</th>
<th>3-Ply Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC foam</td>
<td>417</td>
<td>615</td>
</tr>
<tr>
<td>Balsa</td>
<td>513</td>
<td>840</td>
</tr>
<tr>
<td>GXW1 L</td>
<td>406</td>
<td>663</td>
</tr>
<tr>
<td>GXW1 T</td>
<td>364</td>
<td>697</td>
</tr>
</tbody>
</table>
Edgewise Compression Strength of Skin Laminates

- GXW2 performed lower than PVC foam and balsa
- GXW4 and GXW5 were designed to provide improved performance

⇒ Demonstrates ability to engineer FRC to meet requirements
⇒ In practice: Design to strain requirement

Test Configuration
Specimen: 250mm × 150mm
Gage length: 150mm
Weight and Cost Analysis

- **Note on Representative Core Prices**
 - PVC foam and balsa: Representative prices, reflecting input from a variety of sources
 - GX-FRC: Price was set equal to balsa cost – This is a *conservative price* for high-volume applications
Weight and Cost–25mm Blade Skin Cores

⇒ GXW2 FRC offers lower cost and weight than PVC foam and balsa at equal thickness
Weight and Cost–50mm Shear Web Cores

- **At equal thickness:**
 - \(\text{GXW1 FRC} \) offers lower cost and weight than balsa
 - \(\text{GXW1 FRC} \) heavier (3.4 kg/m\(^2\)) than PVC foam, slightly less expensive

- **FRC may enable thickness reduction compared to PVC foam**
 - not yet accounted for
Weight and Cost–
75mm Shear Web Cores

- GXW1 not optimized versus PVC foam. Consider “GX Light” designed as PVC foam replacement for shear web

Weight Build-up of 75mm Shear Web Cores

- At equal thickness:
 ⇒ “GX Light” FRC 26% less expensive than PVC foam
 ⇒ “GX Light” FRC only slightly heavier (1.4 kg/m²) than PVC foam

- FRC may enable thickness reduction compared to PVC foam - not yet accounted for
FRC Cost Basis

How can FRC compete?

- Low cost input materials
 - Low-property foam serves only as tooling material
 - E-glass roving used in winding
- Low-cost processes
 - Gang saw
 - High-speed winder
 - Foam laminator

Characteristic Costs of Foams and Balsa

- PVC foam - 60 kg/m³
- Balsa - 155 kg/m³
- Polyiso’ foam - 30 kg/m³
- Extruded PS foam - 30 kg/m³
Conclusions and Comments

• TYCOR® Fiber-Reinforced Core (FRC) is a tailor able orthotropic core. Processes well for infusion-molded blades

• Compared to balsa: GX FRC provides equivalent buckling resistance to balsa at approximately the same thickness, and provides cost and weight savings.

• Compared to PVC foam:
 – GX FRC provides equivalent buckling resistance to PVC foam at reduced thickness. Further studies planned to better quantify.
 – GX provides cost savings.
 – GX provides weight savings compared to PVC contour core, slightly heavier for equal-thickness rigid core.

• Long-term benefit of FRC: Availability
 – Commodity input materials (insulation foam, E-glass roving)
 – Low capital investment for new production lines

VISIT OUR BOOTH!