Background, Purpose, and Objective

- **Background**
 - SNL initiated a blade research program in 2002 to investigate the use of carbon in subscale 9 m blades
 - 7 blades manufactured from each of three designs: CX-100, TX-100, and BSDS

- **Purpose of Lab and Field Tests**
 - Verify that blades met their design criteria
 - Investigate unique structural aspects of the blades
 - Examine the use of advanced sensors

- **Overview**
 - 9 m Blade Design Concepts
 - Design Innovations: Inclusion of Carbon, Twist-Bend Coupling, Flatback Airfoils
 - Final 9m Designs
 - Testing: Static, Fatigue, Field
 - Conclusions
9 m Blade Design Concepts

- **CX-100 (Carbon Experimental 100 kW)**
 - Based on ERS-100 blade outboard and NW-100 root
 - Glass-Epoxy blade with full length carbon spar cap
- **TX-100 (Twist-Bend Coupled Experimental 100 kW)**
 - Based on ERS-100 blade outboard and NW-100 root
 - Glass-epoxy blade with terminating glass spar cap
 - 20° off-axis carbon in outboard (~>3.5 m) skins to produce material-induced, passive aerodynamic load alleviation
- **BSDS (Blade System Design Study)**
 - Advanced design featuring flat back airfoils, full-length constant thickness carbon spar cap, integrated root studs, high performance airfoils, and a large, thin root
Carbon in Blades

- Advantages:
 - High stiffness/weight ratio
 - Highly orthotropic
 - Excellent fatigue properties with straight fibers

- Disadvantages:
 - Higher cost
 - Limited availability
 - Difficult to infuse
 - Poor properties with wavy fibers
 - Possible stiffness mismatch issues

- Potential solution: SAERTEX glass/carbon triax fabric
 - Relatively inexpensive
 - Infusible
 - Dry fabric for conventional infusion techniques
 - Maintains excellent fiber straightness

Studies of carbon materials performed by and in collaboration with GEC and MSU
Skin Material-Based Twist Bend Coupling

- Couples tension/compression and shear strains in blade skins
- Produces passive aerodynamic load alleviation
- Requires orthotropic materials

Source: NREL

Material Induced Twist-Bend Coupling

TX-100 Blade Skin

2008 Wind Turbine Blade Workshop
May 12th, 2008
Flatback Airfoils

- Flatback airfoils created by the symmetric addition of thickness about the camber line
- Different from truncated airfoils which “chop” the trailing edge off and thus lose camber

Advantages
- Increased sectional area moment
- Reduced sensitivity to surface soiling compared with conventional thick airfoils

Disadvantages
- Increased drag
- Unknown and complex 3D flow
- Greater aero-acoustic emissions*

*Study of flatback airfoils performed in collaboration with UC Davis

Source: Tanner (1973)
9 m Blade Designs: Materials

- Carbon
- Glass
- Fiber Direction
- TX-100
- BSDDS
9 m Blade Designs: Geometry

- **Flatback**
- **Root**
- **Max-Chord**
- **Tip**
- **High Performance Airfoils**

Diagram showing the geometry of 9 m blade designs with labels for flatback, root, max-chord, and tip. Also includes a graph showing span in meters for BSDS, CX, TX, and TX-100.
Static Test Setup

- **PULLEY**
- **WIRE ROPE**
- **LOAD SADDLE**

Graph:
- **Desired Test Load**
- **Applied Test Load**

Axes:
- **Moment (kN-m)**
- **Blade Station (m)**

Diagram:
- **OVERHEAD CRANE**
- **LOAD CELL**
- **SPREADER BAR (2)**
- **TEST STAND**
- **TEST BLADE**
- **LOAD SADDLE**
Static Test Instrumentation

- String Potentiometers
- Acoustic Sensors
- Inclinometers
- Strain Gages
- String Potentiometers
Static Test Results: Spar Cap Strains

![Graph showing strain values for different blade stations and models.](image-url)
Static Test Results: TX-100 Twist

Blade #007

Blade #004

Rotations Measured at 44.0 kN-m Root Moment

67.7 kN-M Root Moment

116.9 kN-m Root Moment

TX-100 Blade #004
Test Results and Analysis: Aft Panel Strains

Note: 0% = HP Edge, 100% = LP Edge
Static Test Results: CX-100 AE Event Location

Note: Energy defined as area under V-t curve.
Static Test Results: BSDS AE Event Location

*Note: Energy defined as area under V-t curve.

Energy:
- <100
- 100-1000
- >1000

Static Test Results: BSDS AE Event Location
Static Test Results: AE Accumulation

![Energy vs Root Moment Graphs for BSDS, CX-100, TX-100, and BSDS](image_url)
Summary of 9 m Results

<table>
<thead>
<tr>
<th>Property</th>
<th>CX-100</th>
<th>TX-100</th>
<th>BSDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb)</td>
<td>383</td>
<td>361</td>
<td>289</td>
</tr>
<tr>
<td>% of Design Load at Failure</td>
<td>115%</td>
<td>197%</td>
<td>310%</td>
</tr>
<tr>
<td>Root Failure Moment (kN-m)</td>
<td>128.6</td>
<td>121.4</td>
<td>203.9</td>
</tr>
<tr>
<td>Max. Carbon Tensile Strain at Failure (%)</td>
<td>0.31%</td>
<td>0.59%</td>
<td>0.81%</td>
</tr>
<tr>
<td>Max. Carbon Compressive Strain at Failure (%)</td>
<td>0.30%</td>
<td>0.73%</td>
<td>0.87%</td>
</tr>
<tr>
<td>Maximum Tip Displacement (m)</td>
<td>1.05</td>
<td>1.8</td>
<td>2.79</td>
</tr>
</tbody>
</table>
CX-100 and TX-100 Fatigue Simulations

CX-100
(Static Driven Design)

TX-100
(Fatigue Driven Design)
Fatigue Loading

CX-100
(Single Point Loading)

TX-100
(Resonant Loading)
CX-100 Fatigue Test

(click image to play video)

CX-100 Early in Fatigue Test

2008 Wind Turbine Blade Workshop
May 12th, 2008
CX-100 Fatigue Test

CX-100 Dimple (left) and Tip Movement (right) at Failure
CX-100 Fatigue Failure Mechanism

- Dimple formed early during test around max chord
- Low pressure skin pushed outward aft of spar cap and inward forward of spar cap
- At 1.5M cycles, crack began to grow along spar cap/aft-panel intersection
- Crack resulted in greatly decreased stiffness in the area and cause severe edgewise movement

CX-100 Crack Growth
TX-100 Fatigue Test

TX-100 Early in Fatigue Test

2008 Wind Turbine Blade Workshop
May 12th, 2008
TX-100 Test Results

TX-100 Sparcap Tip Stress Contours

2008 Wind Turbine Blade Workshop
May 12th, 2008
TX-100 Fatigue Failure Mechanism

- At 723k cycle count, crack began to grow just outboard of HP spar cap termination
- Cracks grew at 65° angle from blade axis until 2.4M cycles
- Crack then changed direction and grew along 20° direction corresponding to carbon fiber direction
- Growth of crack continued until 4M cycles when excessive torsional movement of the blade tip occurred
Site
6 m/s average wind speed at 10 m

Measurements
■ 40 Hz Data
■ Currently recording 47 channels
■ Inflow
 • Center and off-axis met towers, and nacelle
 • Wind speed and direction
■ Power
■ Loads
 • Tower, hub, and blade
■ Noise
ATLAS II (Accurate Time-Linked data Acquisition System)

- Built for Wind Turbine Applications
- Compact
- Continuous Operation (24/7)
- High Reliability
- Automated Acquisition and Archiving
- Lightning Protection on all Channels
- Wireless Data Acquisition and Programming

ATLAS II Ground (top) and Rotor (bottom) Units
CX-100 Field Test Results

- Wind Speed (m/s):
 - Hub Edge
 - Hub Flap

- Moment (kN-m):
 - Wind Speed (m/s)
 - Power (kW)
Conclusions

- Infused carbon was effectively implemented in 9m blade designs
- All blade designs survived static test loadings
- TX-100 blade displayed twist-bend coupling
- Strains of over 8000 me (tension and compression) measured in BSDS carbon spar cap
- BSDS flat back behaved well at and beyond test load
- Acoustic emissions monitoring detected locations of damage as well as blade failure loads
- CX-100 and TX-100 blades survived 20-year damage equivalent fatigue tests
- CX-100 failed in fatigue due to buckle formation near max-chord which caused a fracture between the sparcap and aft balsa panel leading to excessive edge movement
- TX-100 failed in fatigue due to crack which grew from sparcap termination on HP surface along carbon fiber direction causing excessive tip rotation
- Both blades failed in or near carbon areas
- Blades failed due to damage in off-axis directions, showing the difficulty in using simple, fiber-direction fatigue calculations
- Initial results show CX-100 performed as expected
Acknowledgements

US Department of Energy
Scott Hughes, Jeroen van Dam, Mike Jenks, Jason Cotrell, and Dave Sims (NREL)
Dayton Griffin and Tim McCoy (GEC)
Mark Rumsey, Perry Jones, Wesley Johnson (SNL)
Mike Zuteck
Derek Berry (TPI)