Welcome

• Trends in Utility-Scale Wind Turbine Production
• Trends in Blade Fabrication
• Research in Blade Technologies at Sandia
• Future Research Needs
Industry Trends

• Most significant trend in market place is the tight supply situation.
 – Trend of 25% increase in world-wide installation continued in 2007 (actually was 40%).
 – It’s a Seller’s Market - prices for wind turbines have increased and delivery time is longer.
 – Installed Cost Now – $1600-2200/kW.
 • $1000 used to be the goal only a few years ago.
 – Component suppliers costs are rising.

• U.S. production tax cuts expire at end of 2008.
 – Legislation stilled being worked on.
 – China is 2nd in installed capacity (3287MW - 2007).

• Offshore installations - 2008 forecasts significantly lowered, but expected to grow to 4.7% by 2012.

Data from BTM Consults 2007 and web
Industry Trends

• U.S. has largest number of turbines worldwide (25,667) and 1st in installed capacity in 2007 (5244 MW).
• Average turbine size delivered in 2007 was 1.492 MW about 70kW above 2006.
• 1.5-2.5MW turned into “Main Stream” position – 48% of 2007 capacity – perhaps less larger models on market.
• Two of top ten turbine suppliers are now Chinese.
• Smaller turbines preferred in Asian markets.
• 90% of turbine use pitch as the control feature – 10% use active stall.
• Amount of materials required to support blade production growing bigtime.

Fiberglass reinforcement: 51% 30 x 10^6 kg
Resin: 33% 20 x 10^6 kg
Sandwich Core: 4% 2.5 x 10^6 kg
Bonding Adhesive: 7.5% 4.5 x 10^6 kg
Miscellaneous (primarily T-bolts and Lightning Protection): 4.5%
Leading Manufacturer’s Model Sizes

<table>
<thead>
<tr>
<th>Turbine Size</th>
<th>200-300 kW</th>
<th>600kW</th>
<th>800-900 kW</th>
<th>1.0 MW</th>
<th>1.3-1.65 MW</th>
<th>2.0 MW</th>
<th>2.3-2.5 MW</th>
<th>3.5 MW & ></th>
</tr>
</thead>
<tbody>
<tr>
<td>~Blade Size (m)</td>
<td>20</td>
<td>24-25</td>
<td>27-29</td>
<td>37-40</td>
<td>35-45</td>
<td>39-49</td>
<td>52,61.5</td>
<td></td>
</tr>
<tr>
<td>Vestas</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>XXX</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>GE</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>XX</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamesa</td>
<td>X</td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Enercon</td>
<td>X</td>
<td></td>
<td>XXX</td>
<td></td>
<td>XXXX</td>
<td>X</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Suzlon</td>
<td>X</td>
<td></td>
<td></td>
<td>XX</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Acciona</td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldwing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XX</td>
<td>XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinovel</td>
<td></td>
<td></td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>XX</td>
<td>XX</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeWind</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clipper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Blade Size Constraints

• Gravity Loads
• Transportation
• Large Crane Availability

LM 61.5m
Blade for 5MW
Offshore
Blade Manufacturing Processes

- Infusion –
 - TPI, LM Glasfiber, Siemens, GE
- One shot Infusion
 - Siemens
- Pre-preg
 - Vestas, Gamesa
- Wet lay-up
 - GE, K&C
Current U.S. Manufacturing

[Map of the United States showing current U.S. manufacturing locations for various companies involved in blade manufacturing, tower fabrication, and turbine assembly.]

Legend:
- Blade Manufacturer
- Tower Fabrication
- Turbine Assembly

2008 Sandia Blade Workshop
Ongoing Blade Research

Many countries have ongoing research in labs, universities

- U.S. NREL, SNL
- Denmark
 - Risoe (DTU)
- Netherlands
 - TUDelft
 - WMC/ECN
- Universities
- Industry

Wind industry performing more & more independent research

LM Glasfiber Blade and Lightning Testing in Lunderskov, Denmark.
Blade Research Items at Sandia

- Materials & Manufacturing
- Load Control – Active & Passive
- Innovations for Blade Enhancement
 - Very thick airfoils, including flat backs
 - Trailing edge treatment
- Blunt trailing edges – noise, wind tunnel
- Codes
 - Aerodynamic and Structural
 - NuMAD
 - CFD
- Sensor Applications for Lab & Field
- Reliability
Materials & Manufacturing

- Fatigue Characterization of New & Conventional Materials and Forms
- Effects on Manufacturing Process
- Effects of Discontinuities

References
- MSU/DOE Data Base – see www.sandia.gov/wind
Passive Load Control
Bend-Twist Coupling Using Off-axis Material
(TPI/SNL)
Passive Load Control
Bend-Twist Coupling Using Sweep (K&C/SNL)
Active Load Control
Tabs & Flaps (UCDavis/SNL)

Aerodynamic lift, drag and moment during microtab deployment

Pressure contours over the airfoil and instantaneous streamlines over flap region during deployment
RISOE (Buhl, Gaunaa & others)
Flatback Noise & T.E. Treatment

Reference:

2008 Sandia Blade Workshop
Innovations in Research Blades

- Improved manufacturing processes
- Remote build demonstration
- Carbon spar cap
- Off-axis material for bend-twist coupling
- Very thick airfoils (flatbacks)
- Slenderized profile
- Threaded rod (manufactured in place) for inexpensive attachment
Testing of Research Blades – Laboratory & Field
Design Codes

Aeroelastics
- FAST – NREL
- BLADED – commercial (GH)
- FLEX5 – DTU (Academic)
- ADAMS – commercial – (MSC)

Structural Analysis
- NuMAD/BPE (Sandia)
- Focus (WMC)
- Pre-Comp (NREL)

Aerodynamics
- AeroDyn (NREL)
Sensors Applications for Lab and Field

- Detection of de-bonds or no adhesive, dry spots, delaminations
- SBlade & active load control

Acoustic Emissions

Strain Gauges
Future Research Needs

- Materials
 - Coatings
 - Adhesives
 - Thick Laminates
 - Core
- Joints
- Reliability

- Lean Blade Manufacturing
 - Labor Reduction
 - Automation
- Load Control
- More Efficient Designs
 - Optimize material usage
Adios and Thank You