Wind Farm Modeling and Prognostic Opportunities

Jennifer Stinebaugh
Wind Energy Technology Department

&

Dan Briand
System Sustainment & Readiness Technologies Department
Purpose & Overview

• Purpose: Provide an overview of the reliability analysis approach used by SNL and encourage dialogue with industry in order to improve reliability, efficiency, and costs

• Overview
 – Objectives
 – Analysis approach
 – Reliability tools
 • Raptor - Dynamic reliability block diagram simulation
 • Pro-Opta - Static fault tree analysis tool with improvement optimization
 – Prognostics
 • Where it makes sense
Program Objectives

- Establish industry benchmarks for reliability performance
- Improve system performance of wind assets through better asset management
- Identify reliability trends
- Provide high quality information to support operational and maintenance practices
- Targeted efforts to address important component reliability problems

Providing an independent and objective perspective
Analysis Approach

• Data Analysis
 – Investigate existing failure & maintenance data sources
 – Recommend reliability data elements

• Wind Turbine System Baseline ("as is") Model
 – Populate with existing failure & maintenance data
 – Analyze & compare against current system performance

• Optimize Plan ("best bang for the buck")
 – Predict impacts of component & subsystem modifications, changing maintenance practices, etc.
 – Evaluate other cost and availability drivers identified by the baseline model

- Maintenance Data
 - Field data
 - Inspection data

- MTBF Update
 - Data correction
 - New components

- Objectives & Constraints
 - Performance objectives
 - Cost constraints

- Maximize Availability
- Minimize Cost

RESULTS

Annual Cost Reduction

Estimated RECAP Cost

Millions

Thousands
Reliability Toolkit

• Numerous techniques are available
 – Failure modes and effects analysis (FMEA)
 – Failure modes and effect and criticality analysis (FMECA)
 – Reliability block diagram (RBD)
 – Reliability, Availability, Maintainability, and Safety, (RAMS)
 – Etc.

• Numerous tools available
 – Reliasoft
 – Itemsoft
 – SCADA reporting and analysis tools
 – Winsmith
 – Raptor
 – Pro-Opta
Approach

• **Data**
 – Global Energy Concepts (GEC) Reliability and Cost Model for Generic 1 MW Wind Turbine
 • Generic 1 MW Wind Turbine
 • Random & wearout failures modeled
 – Modified based on wind farm owner and operator feedback
 – Further modified to illustrate optimization methodology

• **Reliability software demonstration - come to our booth for in-depth information**
Raptor analysis

- Commercially available Reliability Block diagram software package
- Simulation allows for “scenario testing” or “what if” analysis
Raptor analysis

- Commercially available Reliability Block diagram software package
- Simulation allows for “scenario testing” or “what if” analysis

Inputs
- Preventive maintenance
- Costs, resources
- Spares strategy
- Maintenance delays
- Dependency

Inputs
- Failure, repair
- Costs, resources
- Spares strategy
- Maintenance delays
- Dependency
Raptor scenario analysis

Block Input Tables

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Failure Distro</th>
<th>Param1</th>
<th>Param2</th>
<th>Param3</th>
<th>Repair Distro</th>
<th>Param1</th>
<th>Param2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlBoardMain</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>ControlBrdTop</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>ControlModule</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>FullConverter</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.70</td>
<td>0.0</td>
<td>Fixed</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Gearbox/Brugs</td>
<td>Weibull</td>
<td>1.20</td>
<td>43800.80</td>
<td>0.0</td>
<td>Fixed</td>
<td></td>
<td>840.0</td>
</tr>
<tr>
<td>Gearbox/gears+Brgs</td>
<td>Exponential</td>
<td>43800.0</td>
<td>0.0</td>
<td></td>
<td>Fixed</td>
<td></td>
<td>840.0</td>
</tr>
<tr>
<td>GearboxCooling</td>
<td>Weibull</td>
<td>1.10</td>
<td>119276.10</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td>Exponential</td>
<td>87600.0</td>
<td>0.0</td>
<td></td>
<td>Fixed</td>
<td></td>
<td>840.0</td>
</tr>
<tr>
<td>GeneratorBearings</td>
<td>Weibull</td>
<td>3.50</td>
<td>134114.10</td>
<td>0.0</td>
<td>Fixed</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>Gerabox/High</td>
<td>Weibull</td>
<td>1.70</td>
<td>205115.80</td>
<td>0.0</td>
<td>Fixed</td>
<td>336.0</td>
<td></td>
</tr>
<tr>
<td>HighSpeedCoupling</td>
<td>Weibull</td>
<td>3.50</td>
<td>197226.70</td>
<td>0.0</td>
<td>Fixed</td>
<td>18.0</td>
<td></td>
</tr>
</tbody>
</table>
Raptor scenario analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Standard Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>0.910707002</td>
<td>0.936972202</td>
<td>0.971316509</td>
<td>0.017302916</td>
</tr>
<tr>
<td>MTBDE</td>
<td>1517.627463</td>
<td>1727.607739</td>
<td>1861.100163</td>
<td>115.589939</td>
</tr>
<tr>
<td>MDT</td>
<td>53.974312</td>
<td>116.488777</td>
<td>163.850811</td>
<td>34.204980</td>
</tr>
</tbody>
</table>
Raptor scenario analysis
Raptor scenario building

What if we could cut the time to do crane repairs in half?
Raptor scenario building

<table>
<thead>
<tr>
<th>Block Name</th>
<th>Failure Distro</th>
<th>Param1</th>
<th>Param2</th>
<th>Param3</th>
<th>Repair Distro</th>
<th>Param1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ControlBoardMain</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
</tr>
<tr>
<td>ControlBrdTop</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
</tr>
<tr>
<td>ControlModule</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.67</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
</tr>
<tr>
<td>FullConverter</td>
<td>Weibull</td>
<td>2.0</td>
<td>109397.70</td>
<td>0.0</td>
<td>Fixed</td>
<td>18.0</td>
</tr>
<tr>
<td>Gearbox/Brgs</td>
<td>Weibull</td>
<td>1.20</td>
<td>43800.80</td>
<td>0.0</td>
<td>Fixed</td>
<td>420.0</td>
</tr>
<tr>
<td>Gearbox/gears+Brgs</td>
<td>Exponential</td>
<td></td>
<td>43800.0</td>
<td>0.0</td>
<td>Fixed</td>
<td>420.0</td>
</tr>
<tr>
<td>GearboxCooling</td>
<td>Weibull</td>
<td>1.10</td>
<td>119276.10</td>
<td>0.0</td>
<td>Fixed</td>
<td>14.0</td>
</tr>
<tr>
<td>Generator</td>
<td>Exponential</td>
<td></td>
<td>87600.0</td>
<td>0.0</td>
<td>Fixed</td>
<td>420.0</td>
</tr>
<tr>
<td>GeneratorBearings</td>
<td>Weibull</td>
<td>3.50</td>
<td>134114.10</td>
<td>0.0</td>
<td>Fixed</td>
<td>24.0</td>
</tr>
<tr>
<td>Gerabox/High</td>
<td>Weibull</td>
<td>1.70</td>
<td>205115.80</td>
<td>0.0</td>
<td>Fixed</td>
<td>336.0</td>
</tr>
<tr>
<td>HighSpeedCoupling</td>
<td>Weibull</td>
<td>3.50</td>
<td>197226.70</td>
<td>0.0</td>
<td>Fixed</td>
<td>18.0</td>
</tr>
</tbody>
</table>
Raptor scenario building

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Mean</th>
<th>Maximum</th>
<th>Standard Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>0.952804650</td>
<td>0.961413406</td>
<td>0.978637903</td>
<td>0.006902997</td>
</tr>
<tr>
<td>MTBDE</td>
<td>1632.046674</td>
<td>1779.800675</td>
<td>1881.995967</td>
<td>81.802524</td>
</tr>
<tr>
<td>MDT</td>
<td>41.080956</td>
<td>71.173920</td>
<td>82.591862</td>
<td>11.870411</td>
</tr>
</tbody>
</table>
Pro-Opta Toolset

- Sandia’ reliability optimization tool
 - Maintenance events or summarized data
 - Improvement option optimization
 - Army’s Apache, Navy’s LCAC, ABL, etc.
Pro-Opta Toolset

Field Data
- Turbine #
- Type of “failure” event
- Failure date & time
- Downtime & costs
- Etc.

Data Manager

Data Analyzer

Fault Tree Interface

Summary Data
- Subsystem, component, etc.
- Type of “failure” event
- Failure rates / distributions
- Downtime & cost distributions
- Etc.

Summary Data
(i.e., Failure Distributions)

Optimizer

Improvement Options
- Change in MTBF
- Change in downtime
- Costs for each change
- Etc.

Field Data
(i.e., Maintenance Events)
Pro-Opta Toolset

Field Data (i.e., Maintenance Events)

Data Analyzer

Data Manager

Fault Tree Interface

Summary Data (i.e., Failure Distributions)

“Best bang for the buck”
- Minimize annual cost
- Maximize availability
- Minimize weight
- Etc.

Optimizer

Sandia National Laboratories
Wind Turbine Availability

“... a day in the life of a wind turbine”

Operating & Operable

Repair, Inspection, Supply & Admin

Contributors to Availability:

- No suffix – parts replacement only
- “- Mx” – maintenance performed with no parts replacement
- “- Crane” – crane required to repair or replace component
- “- Can” – parts cannibalized from another turbine
- “- SchMx” – scheduled maintenance
- “- Insp” – planned inspection

A systems approach assesses key availability drivers
Baseline Model Results

Availability = 93.88%

Annual Cost = $59,813
Optimization Setup

- Optimization Setup
 - All TTF and downtime improvements and costs are “notional”
 - 9 improvement options result in 288 combinations of possible solutions
 - Genetic algorithm helps find the optimal or near optimal solution
 - Multiple top solutions available
 - Approximately $100K to spend in improvement options

<table>
<thead>
<tr>
<th>Improvement Option Name</th>
<th>% TTF Improvement</th>
<th>% Downtime Improvement</th>
<th>Implementation Cost</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gearbox -- Overhaul Upgrade</td>
<td>15</td>
<td>0</td>
<td>$20,000</td>
<td>1</td>
</tr>
<tr>
<td>Gearbox -- Overhaul Upgrade</td>
<td>30</td>
<td>0</td>
<td>$50,000</td>
<td>2</td>
</tr>
<tr>
<td>Gearbox -- PHM Implementation</td>
<td>0</td>
<td>50</td>
<td>$7,000</td>
<td>1</td>
</tr>
<tr>
<td>Generator Improvement</td>
<td>30</td>
<td>0</td>
<td>$10,000</td>
<td>1</td>
</tr>
<tr>
<td>Blade -- Specification Change</td>
<td>25</td>
<td>0</td>
<td>$15,000</td>
<td>1</td>
</tr>
<tr>
<td>Blade -- Repair Modification</td>
<td>5</td>
<td>5</td>
<td>$1,000</td>
<td>1</td>
</tr>
<tr>
<td>Blade -- Repair Modification</td>
<td>10</td>
<td>10</td>
<td>$5,000</td>
<td>2</td>
</tr>
<tr>
<td>Spares Inventory Increase</td>
<td>0</td>
<td>35</td>
<td>$30,000</td>
<td>1</td>
</tr>
<tr>
<td>Crane -- Long Term Rental</td>
<td>0</td>
<td>50</td>
<td>$46,600</td>
<td>1</td>
</tr>
</tbody>
</table>
Optimization Results
Optimization Results

Annual Cost History

Summary Information

<table>
<thead>
<tr>
<th>Option</th>
<th>Level</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gearbox -- Overhaul Upgrade</td>
<td>2</td>
<td>50,000.00</td>
</tr>
<tr>
<td>Gearbox -- PHM Implementation</td>
<td>1</td>
<td>7,000.00</td>
</tr>
<tr>
<td>Generator -- Improvement</td>
<td>1</td>
<td>10,000.00</td>
</tr>
<tr>
<td>Blade -- Specification Change</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Blade -- Repair Modification</td>
<td>1</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Spares Inventory Increase</td>
<td>1</td>
<td>30,000.00</td>
</tr>
<tr>
<td>Crane -- Long Term Rental</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>98,000.00</td>
</tr>
</tbody>
</table>
Prognostics & Health Management (PHM)

- Prognostics & Health Management:
 - A technology to accurately predict the remaining useful life of a system or component
 - Produces time-to-failure (TTF) estimates which could be projected for long periods of time to assist in maintenance planning.
 - Requirement of every major new military hardware acquisition: FCS, JSF, etc.

System Health Condition

- **Functioning**: Loss of life and/or system due to catastrophic failure
 - **Prescriptive replacement of functioning “good” item**: $\$\$
- **Degrading**: Optimum
 - $\$$ Optimum
 - Replace item with maximum usage before failure
 - Associated Cost with Time of Replacement
 - $\$\$
- **Failing**: Loss of life and/or system due to catastrophic failure
 - $\$$\$$\$$\$$\$

- Time

[Image of a diagram illustrating the health conditions, costs, and decisions related to system maintenance.]
Sandia PHM System Architecture

Data Fusion: Bayesian Belief Networks

Evidence Engine (System Health)
- System
- Subsystem
- Component

Data Analysis
- Raw Sensor Data
- Sensor Feature Extraction
- Sensor Feature Interpretation (NN, SHT, SET)

Consequence Engine
- Maintenance Scenarios
- Consequence Analysis
- Optimal Ops / Maintenance Recommendations

Consequence Engine
- Updated TTF Distributions
- Estimates of Remaining Useful Life

- Environmental Conditions
- Maintenance History
- Physics of failure
- Aging and Time-to-Failure
Sandia PHM Research

• Nuclear Power Plant “Smart” Equipment
 – DOE Nuclear Energy Research Initiative (NERI) with MIT, etc.
 – Introduce PHM to selected power plant equipment

• Manufacturing Facility PHM
 – DOE funded program
 – Implement PHM in manufacturing facility

• Machine Tool PHM
 – DOE funded program
 – Implement PHM on SNL machine tools

• F-16 Accessory Drive Gearbox (ADG)
 – Joint Shared Vision program with LM Aero
 – Extend replacement intervals

• Airborne Laser (ABL)
 – Program with MDA and Industry
 – Implement PHM on fluid flow systems (COIL)

• MEMS-Based PHM for Internal Combustion Engines
 – Predict failures in internal combustion engines and other rotating machinery
 – Low footprint PHM hardware & software solution
Sandia PHM Research

- Develop a low-footprint PHM solution (MEMS) for rotating machinery
 - Sandia 3-year internally funded research (finishing 1st year)
 - Predict failure through vibration analysis & oil properties

Wind Turbine Gearbox Application

Maintenance Computer

MEMS PHM Sensor Node

- Integrated IR Spectrometer, IR Source, Accelerometer, DSP, Wireless Comm., Long-life battery

Real-Time Monitoring Software integrated in onboard display

Sensor mounted in oil pan.
Summary

• **Program Objectives**
 – Establish industry benchmarks for reliability performance
 – Improve system performance of wind assets through better asset management
 – Identify reliability trends
 – Provide high quality information to support operational and maintenance practices
 – Address important component reliability problems

• **Multiple reliability analyses tools**
 – Assess wind turbine top contributors to availability
 – Determine optimal component improvement options

• **Investigate PHM applications**
 – Evaluate applicable technologies
 – Examine cost / benefit