Factors Influencing Wind Turbine Reliability in Pitch System Designs

2006 Wind Turbine Reliability Workshop

Hosted by:
Sandia National Laboratories
In Association with:
National Renewable Energy Laboratory (NREL)
American Wind Energy Association (AWEA)

Albuquerque, NM 3 and 4 October, 2006
MLS Electrosystem LLC

- Joint Venture Founded in 2000
- Focused on Electric Servo Pitch Control
- Experience with Servo Pitch Since 1996
- Expanding Operations to Support Growth
 - Seneca, PA
 - Engineering and Development Labs
 - Electronics and Electrical System Assembly
 - Houston, TX
 - Mechanical Applications and Design Engineering
 - Mechanical Assembly for Pitch and Yaw Gears
Importance of Reliability

• It’s All About the ROI
 – Exceeding Production Expectations
 – Beating Availability Targets
 – Reliability of Sub-Systems is Key to Availability and ROI
The Language of Reliability

• For Wind Turbine Sub-Systems That Means:
 – Reliability: Things That Don’t Break (High MTBF)
 – Durability: Time Between Maintenance Intervals
 – Predictability: Maintenance At Favorable Times
 – Serviceability: Short Time For Maintenance/Repair
 – Accessibility: Few Restrictions On Getting There
Full Span Blade Pitch Sub-System Basics

- Follows Blade Pitch Angle Demands from the Turbine Control System
- Provides Varying Degrees of Speed and Power Regulation
- Can Provide Load Mitigation
 - Tower
 - Drive Train
 - Blade Fatigue
- Can Provide Real-Time Blade Root and Other Load Data
- Part of Grid Loss Ride Through Strategy
- Is the Aerodynamic Brake to Stop the Turbine – Critical Safety Function
Full Span Blade Pitch Sub-System Basics

- Market Technology Trends
 - Increasing Dynamic Response
 - Increasing Sophistication of Command and Control Processing

Time

- Blade Fatigue Mitigation
- Embedded Blade Strain
- Dynamic Loads Mitigation
- Rotor Speed Regulation
- Optimize Angle for Stall Regulation
- Barometric Compensation
Full Span Blade Pitch Sub-System Basics

Not An Industrial Application!

- Outdoor or Semi-Outdoor Environment
- Restricted Access
- Lightning Strikes
- Other Electrostatic Discharges
- AC Mains Supply Transients
- Rotational Forces
- Fatigue Cycles > 2×10^8 (30 Years)
Full Span Blade Pitch Sub-System Basics

- Full Span Blade Pitch Actuator Types
 - Conventional Hydraulic
 - Servo Hydraulic
 - Thyristor Electric
 - Servo Electric
Full Span Blade Pitch Actuator Types

- Standard Hydraulic
 - Widely Deployed
 - Well Suited to the Early Objectives for Pitch
 - Low Initial Cost
 - Very Rugged and Reliable If Maintained
 - Maintenance Interval 6 Months to 1 Year
 - Well Established Support Infrastructure and Organizations
Thyristor Electric
- Most Widely Deployed Electric Pitch Type
- Low Response 50 to 60 Hz Torque Response
- Low Maintenance - In Principle
- Uses Sophisticated Electronic Controls
Full Span Blade Pitch Actuator Types

- Servo Hydraulic
 - Response Suitable to Achieve Latest Pitch Objectives: 90 to 200 Hz Torque Response
 - Performance Sensitive to Maintenance
 - Reliability Sensitive to Maintenance
 - Very High Maintenance: 2 to 6 Month Intervals
 - Uses Sophisticated Electronic Controls
Full Span Blade Pitch Actuator Types

- Servo Electric
 - Newer Technology in the Wind: Late 90s
 - Response Suitable to Achieve Latest Pitch Objectives: 300 to 500 Hz Torque Response
 - Low Maintenance: In Principle
 - High Reliability: In Principle
 - Uses Sophisticated Electronic Controls
Factors Influencing Reliability in Design

- Electrical and Electronics Related
 - Components Rated for -40 to +85°C or Better
 - Capacitor Circuit Design for Durability
 - Low Operating Ambient Compared to Part Rating
 - Use of Tantalum Capacitors
 - Extended Life Electrolytic Parts
 - Applied Voltage Low Percentage of Rated
 - Ripple Current Low Percentage of Rated
 - Power Films in High Power Switching Circuits
Factors Influencing Reliability in Design

• Electrical and Electronics Related
 – Optocouplers Circuit Design Durability
 • Conservative CTR – Margin for Lifetime Drift
 • High dV/dt rated parts
 – Protecting Circuits from Damaging Transients
 • PCB Layout and Circuit Design Techniques
 – Construct Faraday Cages in PCB Layers
 – Hand Place Parts and Signal Routing
 – Y-Capacitors on Isolation Barriers
Factors Influencing Reliability in Design

• Electrical and Electronics Related
 – System Packaging and Assembly Practices
 • Learn from Aircraft and Automotive Techniques
 • Laced Cable Harnesses
 • High Vibration Automotive Connectors
 • Thread Lock or Prevailing Torque Fasteners
 • Mechanical Stabilization of Electronic Parts
Factors Influencing Reliability in Design

- Electrical and Electronics Related
 - Protection of Power Switching Electronics
 • Fast Bridge High Current Detector - 5 μSec
 • Survive Direct Shorts and Ground Fault to Output Stage
 - Exceed EMC Transient Immunity Standards
 • IEC Level IV+ EFT Burst – No Fault
 • IEC Level IV+ Surge – No Fault
 • IEC Level IV+ ESD – No Fault
Factors Influencing Reliability in Design

• Electrical and Electronics Related
 – Environmental Protection – Equipment Enclosures
 • Pressure Compensation
 • Anti-Condensation System
 • Conformal Coating and Trace Spacing on PCBs
 – Allowance for Non-Conductive Pollution
 – Permits Condensation
Factors Influencing Reliability in Design

- Electrical and Electronics Related
 - Temperature Management of Equipment Enclosures
 - Circulation to Maintain Uniform Temperatures
 - Comfortable Temperature Rise at Full Rated Load
 - Identify and Validate Hot Spots

Temperature Validation
Factors Influencing Reliability in Design

- Durability of Emergency Power – Batteries
 - Approved for Aircraft and Air Transport
 - 5 to 10 Year Service Life
 - Charging Techniques
 - “High Rate” Construction
 - Initial Capacity
 - Validation of Supply
Factors Influencing Reliability in Design

- Durability of Emergency Power – Batteries
 - Validation Testing
 - Production Testing

Battery Internal Resistance vs Temperature
Factors Influencing Reliability in Design

- Preventative Maintenance up to 30 Years
 - Scheduling Maintenance
 - Batteries 5 Years
 - Motor Brushes Typically 5 to 10 Years
 - Measure First of Fleet After 2 Years
 - Establish Replacement Schedule
 - Cooling Fans 10 Years
 - Predicting Maintenance
 - Detect Battery Maintenance Several Months Before Need
 - Extend Maintenance to 6 to 10 Years
 - Monitor Temperature Rise for Given Conditions
Factors Influencing Reliability in Pitch System Designs

- Reliability = Availability = ROI
- Pitch Systems Present Special Design Challenges
- Increasing Response and Performance Demands
 - Challenges “Conventional” Pitch System Types
 - Requires Newer Servo Based Approaches
- Availability Driven Design Techniques In Servo Pitch Systems