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Modeling and Simulation Motivation
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Recently Supported Research Projects

The use of design tools at Sandia provides a bridge between
research and application by supporting our projects:

m SMART rotor technology
- System simulations with active reduction of loads

- System simulations and blade analysis to support SMART
Blade design

m CX-100 sensor blade activities

- Blade test definitions

- Sensor placements
m “Certification” of the 100m blade design concept
m Blade fatigue failure modeling

111! Sandia National Laboratories




Full 3D Blade

Structural
Analysis

Blade Flutter




ade Design with NuMAD
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Use of Offset-Thickness Shell Nodes
Eii_\\
m Offset-thickness nodes are most ——— / /

dESlrable for Wlnd turblne blade FE Figure 2. Schematic of physical representation of layered

models shell elements with nodes positioned at the mid-
thickness.

m The outer blade surface is the specified
surface e\
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Figure 3. Schematic of physical representation of layered
shell elements with nodes offset to the bottom
surface.!
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Figure 4. Blade cross-sections with nodes located at the exterior surface (a) and the mid-thickness (b).



Offset Node Shell Element Problems

m Work by Daniel Laird, and others, documented in 2005 uncovered significant
problems with the use of offset-node shell elements
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m The wind industry sought other solutions for blade models:

- Restrictions to mid-thickness node shell elements

- Entire wind turbine blades modeled with solid elements

- High fidelity cross sectional analysis, such as VABS
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Very good news!
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” e Blade Structural Model

m Wind turbine blades include

- Variable section shapes ¥ Simpli.fication

with twist,

- Multiple materials and
composite layups (glass,
carbon, balsa, foam,
epoxy, adhesives)

- One or more shear
webs

Beam Model:
Up to 6 DOF per node

\>

(Colors represent composite stacks) @ e RS




Beam Properties

m Motivation: Efficient aeroelastic analysis for design and
certification
- Time marching system response simulation
- Stability analyses
- Blade test design and setup

m Typical outputs consist of the following distributions
- Bending, torsion and axial stiffness
- Coupled stiffness
- Shear center coordinates

- Tension center coordinates

- Inertial properties: masses and center of mass
(1) Sandia National Laboratories




Two-Dimensional Approach

®m Pros
- Readily and freely available
- Computationally efficient

m Cons
- Limited to 2D understanding
- Simple examples below:

EI _ flap = ([ E(x, y)x"dxdy -

EI edge= j j E(x,y)y dxdy
GJ = j j G(x,y)(x* + y*)dxdy and
EA = ”E(x,y)dxdy

m Useful Tool: PreComp
- Created by Gunijit Bir, NREL

Property Distribution Computations

Three-Dimensional Approach

®m Pros
- Includes three dimensional effects

m Cons

- Requires creation of the finite element
model f

'
s

Extraction (BPE)
- Created by David Malcolm, GEC
- Distributed with NuMAD (Sandia Labs)

(1) Sandia National Laboratories



BSDS Model
2D & 3D beam properties

Flapwise bending stiffness Edgewise bending stiffness*
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*Note: bugs were identified and resolved

in PreComp as a result of this work. See
Resor 2010 AIAA-SDM paper for details.

BPE Property ~50% of PreComp
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BSDS Model

2D & 3D beam properties

Torsional stiffness
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" Current Sandia Classical Flutter Capability

m Current capability utilizes:
- MSC.Nastran 2005

- FAST2NAST.m (Matlab routine)

+ Required inputs: lift curve slope and pitch axis location along with information taken from
ad.IPT and blade.DAT files utilized by FAST

- Fortran executable

+ Determines necessary mass, stiffness, and damping matrix additions due to aerodynamic
effects (Theodorsen)

+ Generates additional Nastran decks for the complex eigenvalue solve
m The analyst iterates on operating speed, following the complex modes, to find the
flutter speed

M+ M, (@)Rii}+[Co(Q)+C, (. Q)+ [K 4y, Q)+ K, + K, (Q)+ K, (@0.Q)fu}=0

Matrix__________| Description Fiter Mode Shape

M, C, K Conventional matrices
(with centrifugal stiffening)

M,(Q), C, (w, Q), K,(w, Q)  Aeroelastic matrices

Cc(Q) Coriolis
K(Q) Centrifugal softening
S Ke Bend-twist coupling
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Blade Aerodynamics Modeling

Blade Aerodynamic
Model * Blade aerodynamic model requires

computational models of airfoil performance
* Many (hundreds) of solutions typically required

SNL Thunderbird Advanced 3D Airfoil
Computing Cluster Simulation

Flatback 10-degs (5h/65)

TIME = 0.00

(1) Sandia National Laboratories
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Wind Turbine System Modeling

m All disciplines come together to

enable assessment of system effects

m Changes to component technology ‘A’
affect system behavior resulting in —
both costs and benefits Structures Controls

() Sandia National Laboratories




Design Requirements

m Conditions:
- 20 year minimum design life
- Normal wind conditions
- Extreme wind conditions

- Wind defined by average wind speed
and turbulence intensity

m Loads

- Ultimate loads — can the system
withstand the largest expected loads?

- Fatigue — can it withstand the
combination of all loads?

- Functional requirements — deflections
(tower clearance)

Design Criteria Examples

Example Load Cases

m Normal production: Fatigue and/or ultimate
loads due to

- Normal turbulence
- Extreme turbulence

- Extreme gust
+ Extreme wind speed
+ Extreme direction change
+ Extreme wind shear

- Start up and shut down
m Normal production with faults
- Yaw system fault
- Pitch system fault
- Loss of electrical load, etc.
m Parked Turbine
- Extreme loads
- Normal loads

L s
Transportation loads @ S



Aerodynamic Performance

Structure and Materials

' Analysis with Wind Turbine
Aeroelastic Simulation

Aeroelastic System

Dynamics Model
| System Response
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Tools: FAST and ADAMS
| FAST | ADAMS

Available from NREL MSC Corporation
: Up to 2 each of blade Unlimited; depends on
SHLEIE] (ees (el flap/edge and tower F-A/S-S discretization
Aerodynamic forces AeroDyn AeroDyn
Very fast computations; Code verification;
Uses Adequate for most work, Simulations requiring several
especially certification dynamic structural modes
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Aeroelastic Tool Computation Times

m Project goals dictate the system dynamics tool used

8 -+

7 -

Computation Time/
Simulated Time
D

Typical

1.5MW VSVP Simulation Times
10min Simulated Turbulent Wind: 682
Intel Core2 6700@2.66 GHz

4 GB DDR2 RAM; Win 7 64-bit OS

FAST FAST&Simulink ADAMS ADAMS&Simulink

Nonlinear

Structurally

System

Tailored Controls

Certification

Research
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Blades/Tower




Blade Roof

Example: Fatigue Analysis of System

Response Data

t Flap Moment (18m/s)
RootMyb1

10g44(20 year composite counts) - RootMyb1 5 ] éasehne
[N Baseline wiAALCY
% e . [ 110% Increased Rotor w/AALC
gzsi - ée i
%20 : § 2
5 10 Cyeic a;imude (kNm2)0 25 30 7o 500 1000 gslo?‘”m 2000 zsou 3000
10% chord les gtArfwzenAen:gsy atmkt: Loapdncmngml‘p‘?l_; cement control.
Percent Change in 9 n | 18 | AveWind | Avg.Wind
. ] / / / 5.5m/s Tm/s
Equivalent Fatigue Load mis | mis o mis
Low Speed Shaft Torque -1.7 49| -33.5 -3.1 -7.3
Blade Root Edge Moment 1.7 1.9 2.5 0.8 0.8
Blade Root Flap Moment -31.2| -27.1 | -30.4 -23.1 -26.3
Tower Base Side-Side Moment -0.1 -8 7.2 -0.9 -2.9
Tower Base Fore-Aft Moment | -18.6| -16.5| -13.8 -5 -8 |
Tower Top Yaw Moment | 532 -42.9| -43.4 -25.1 -32.2




Importance of System Analysis

m Return at this point to the original motivation:
Bridging research and application

m A philosophy that seems to always apply for modifications to properly designed wind
turbine systems:

There are no free handouts from Mother nature

m Itis just as important to understand and report the cost of an innovation as well as
the benefit; Common system costs include

- Increased forces and moments elsewhere in the system
- Increased complexity
- Decreased energy capture
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bine Design Tools in Use at Sandia
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Summary

m Blade design tools have been shown
m Success with new shell element formulations has been shown

m Full aeroelastic models are critical for assessment of system
effects of innovations on overall response and on the cost of
electricity

(1) Sandia National Laboratories
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mThank you!




