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Modeling and Simulation MotivationModeling and Simulation Motivation

Smaller turbines     → Larger turbines

$         → $$$

B ild B k R d i → Ad d Si l iBuild, Break, Redesign → Advanced Simulation

Paper airplane
Commercial 
Aircraft
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Recently Supported Research Projectsy pp j

The use of design tools at Sandia provides a bridge between 
research and application by supporting our projects:research and application by supporting our projects:

 SMART rotor technology
• System simulations with active reduction of loads 
• System simulations and blade analysis to support SMART 

Blade design
bl d i i i CX-100 sensor blade activities

• Blade test definitions
• Sensor placements• Sensor placements

 “Certification” of the 100m blade design concept
 Blade fatigue failure modelingg g



Wind Turbine Design Elementsg

Blade Analysis

Full System

Material 
Properties 
& Layup

Full 3D Blade 
Structural 
Analysis

Full System 
SimulationAerodynamics

Shapes

Blade Flutter

Aerodynamic 
Loads

Advanced 
Performance

Data

Shapes

Controls
Inflow



Blade Design with NuMAD
ANSYS FE ModelNuMAD ANSYS Analysis
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Use of Offset-Thickness Shell Nodesf ff

 Offset-thickness nodes are most 
desirable for wind turbine blade FE 
models

 The outer blade surface is the specified 
surface



Offset Node Shell Element Problemsff

 Work by Daniel Laird, and others, documented in 2005 uncovered significant 
problems with the use of offset-node shell elementsproblems with the use of offset-node shell elements

 The wind industry sought other solutions for blade models: The wind industry sought other solutions for blade models:
• Restrictions to mid-thickness node shell elements 
• Entire wind turbine blades modeled with solid elements

h f d l l l h• High fidelity cross sectional analysis, such as VABS



New shell formulation in ANSYS 12.0
Very good news!Very good news!

 Redo the AIAA 2005 
investigations using new 
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Blade Structural Model 
Si lifi ti Wind turbine blades include Simplification• Variable section shapes 

with twist, 
• Multiple materials and 

composite layups (glass, 
carbon, balsa, foam, 
epoxy, adhesives)

• One or more shear• One or more shear 
webs 

Beam Model:
Up to 6 DOF per node

(Colors represent composite stacks)



Beam Propertiesp

Motivation: Efficient aeroelastic analysis for design and 
certificationcertification
• Time marching system response simulation
• Stability analyses
• Blade test design and setup

i l i f h f ll i di ib i Typical outputs consist of the following distributions
• Bending, torsion and axial stiffness
• Coupled stiffness• Coupled stiffness
• Shear center coordinates
• Tension center coordinates
• Inertial properties: masses and center of mass



Property Distribution ComputationsProperty Distribution Computations
Two-Dimensional Approach
 Pros

Three-Dimensional Approach
 Pros

• Readily and freely available
• Computationally efficient

 Cons

• Includes three dimensional effects
 Cons

• Requires creation of the finite element 
d l• Limited to 2D understanding

• Simple examples below:
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 Useful Tool: PreComp
• Created by Gunjit Bir, NREL

 Useful Tool:  Beam Property 
Extraction (BPE)

• Created by David Malcolm GEC
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• Created by David Malcolm, GEC
• Distributed with NuMAD (Sandia Labs)



BSDS Model
2D & 3D b i2D & 3D beam properties

Flapwise bending stiffness Edgewise bending stiffness*
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*Note: bugs were identified and resolved

BPE Property ~50% of PreComp

Note:  bugs were identified and resolved 
in PreComp as a result of this work.  See 
Resor 2010 AIAA-SDM paper for details.



BSDS Model
2D & 3D b i2D & 3D beam properties

Torsional stiffness
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Current Sandia Classical Flutter CapabilityCurrent Sandia Classical Flutter Capability
 Current capability utilizes:

• MSC.Nastran 2005
• FAST2NAST.m (Matlab routine)( )

 Required inputs: lift curve slope and pitch axis location along with information taken from 
ad.IPT and blade.DAT files utilized by FAST

• Fortran executable
 Determines necessary mass stiffness and damping matrix additions due to aerodynamic Determines necessary mass, stiffness, and damping matrix additions due to aerodynamic 

effects (Theodorsen)  
 Generates additional Nastran decks for the complex eigenvalue solve

 The analyst iterates on operating speed, following the complex modes, to find the 
fl tt dflutter speed

1010
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Blade Aerodynamics Modelingy g
• Blade aerodynamic model requires 

computational models of airfoil performance
(h d d ) f l i i ll i d

Blade Aerodynamic 
Model

SNL Thunderbird 
Computing Cluster 

• Many (hundreds) of solutions typically required 

Advanced 3D Airfoil 
Simulationp g Simulation
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Wind Turbine System Modeling

Aerodynamics
 All disciplines come together to y
 All disciplines come together to 

enable assessment of  system effects

 Changes to component technology 

ControlsStructures

g p gy
affect system behavior resulting in 
both costs and benefits



Design Criteria ExamplesDesign Criteria Examples

Design Requirements Example Load CasesDesign Requirements
 Conditions:

• 20 year minimum design life
• Normal wind conditions

Example Load Cases
 Normal production: Fatigue and/or ultimate 

loads due to 
• Normal turbulence

• Normal wind conditions
• Extreme wind conditions
• Wind defined by average wind speed 

and turbulence intensity

• Extreme turbulence
• Extreme gust

 Extreme wind speed
 Extreme direction change

 Loads
• Ultimate loads – can the system 

withstand the largest expected loads?
• Fatigue – can it withstand the

 Extreme wind shear

• Start up and shut down

 Normal production with faults
• Yaw system fault• Fatigue – can it withstand the 

combination of all loads?
• Functional requirements – deflections 

(tower clearance)

• Pitch system fault
• Loss of electrical load, etc.

 Parked Turbine
• Extreme loads• Extreme loads
• Normal loads

 Transportation loads



System Analysis with Wind Turbine 
Aeroelastic Simulation

Aerodynamic Performance
Aeroelastic Simulation

Aeroelastic System 

Turbulent Wind Input

Dynamics Model
System Response

Includes ControlsStructure and Materials Includes Controls 
Implementation



Tools: FAST and ADAMS
FAST ADAMS

Available from NREL MSC Corporation

Up to 2 each of blade Unlimited; depends onStructural modes included Up to 2 each of blade 
flap/edge and tower F-A/S-S

Unlimited; depends on 
discretization

Aerodynamic forces AeroDyn AeroDyn

Very fast computations; Code verification;
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Aeroelastic Tool Computation Times

8 1.5MW VSVP Simulation Times

p
 Project goals dictate the system dynamics tool used
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Example: Fatigue Analysis of System 
R D tResponse Data

Percent Change in 
Equivalent Fatigue Load

9
m/s

11
m/s

18
m/s

Avg.Wind
5.5m/s

Avg.Wind
7m/s

q g
Low Speed Shaft Torque -1.7 -4.9 -33.5 -3.1 -7.3

Blade Root Edge Moment 1.7 1.9 -2.5 0.8 0.8
Blade Root Flap Moment -31.2 -27.1 -30.4 -23.1 -26.3

Tower Base Side-Side Moment -0.1 -8 -7.2 -0.9 -2.9
Tower Base Fore-Aft Moment -18.6 -16.5 -13.8 -5 -8

Tower Top Yaw Moment -53.2 -42.9 -43.4 -25.1 -32.2



Importance of System Analysisp f y y
 Return at this point to the original motivation: 

Bridging research and application

 A philosophy that seems to always apply for modifications to properly designed wind 
turbine systems:

There are no free handouts from Mother nature

 It is just as important to understand and report the cost of an innovation as well as 
the benefit;  Common system costs include

• Increased forces and moments elsewhere in the system
d l• Increased complexity

• Decreased energy capture

LLMOLRCICCFCRCOE + )&(* LLMO
AEP

COE ++= )&(



Wind Turbine Design Tools in Use at Sandia
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Summaryy
 Blade design tools have been shown

 Success with new shell element formulations has been shown

 Full aeroelastic models are critical for assessment of system 
effects of innovations on overall response and on the cost of 

l i ielectricity



Thank you!


