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Foreword

Project activities through 3 research projects since 2003:
10 Scientists, 5 PhD students, 6 Master student
Mac Gaunaa, Peter B. Andersen*, Christian D. Bak, Thomas Buhl
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* Advanced load alleviation for wind turbines
using adaptive trailing edge flaps: Sensoring
and control

Andersen, Peter Bjgrn

RIS@-PhD--61(EN)
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Outline

e Introduction:
o The problem
o A solution
e Model:
o In HAWC2
e Validation:
o CFD comparison

o Wind Tunnel Tests
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e Results: Simulation
o Test case
o Stochastic Wind Field
o Wake Situation
e Results: Stability
e Realization:
o Sensors
o Actuators
e First Full scale Test (preliminary)

e Conclusion and future...
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Introduction: the problem

e What is the problem?
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in the wind glrecticn

e Not uniform flow (nor in time, nor in space)
e Variable forcing on elastic structure
= Dynamic loading, fatigue.
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Introduction: a solution?

i

e |s there any solution?

e Nature: Kestrel
e Compensates for inflow fluctuations by:
Adapting geometry of lifting surfaces

e Airplanes:

e Same solution, control on the lift by modifying
geometry of wing:

Trailing Edge Flaps
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Introduction: a solution?

e And on Wind Turbine Blades?

e Try the same:
Apply Adaptive Trailing Edge Flap

e [Other solutions:]
Rigid rotating flaps, deploying

e Same ‘kestrel principle’: “Ad Avoid )& %
o Adapt geometry to compensate apt to Avoia & i
fluctuations |

o Control of the loads: local along
blade span, faster than pitching
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How to model it?

o
o
o
e Wind Turbine Model involves - Different approaches

3+1 parts: — available for a smart

o Aerodynamic rotor

o Structural - Different degrees of

o Control complexity and accuracy

(CFD, panel methods,
vortex lines,
FEM, multi-body... etc
etc.)

o +1: wind conditions.

...model in HAWC?2:

« Enough complex...

to simulates effect (and  Aerodynamics in HAWC2:

benefits?) of ATEF on WT © BL type of model, extend
loading for flap

« Enough simple... o Induced velocity: BEM,
to implement in time or Near+Far Wake

marching code
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Validation: does all this make sense?

e Validation with... e Validation of...

o 2D CFD _ o Aerodynamic model (2D)

o Wind Tunnel Test o Proof Of Concept
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Validation: CFD, aerodynamics =
a=16° Ap=2°
e Validation of 2D aerodynamic model T
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CFD: proof of concept

e 2D CFD coupled with servoelastic model:

—— Aeroelastic Model using EllipSys2D —— Aeroelastic Model using EllipSys2D
—-—-Aeroelastic Model using Potential Flow Solver ——-Aeroelastic Model using Potential Flow Solver
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Validation: Wind Tunnel
e Dec 2005: e Jun 2009: e Dec 2009:
Prescribed motion. Closed loop, feedback Prescribed motion
Piezo Actuator control Rubber TE actuator

Piezo, Pitot, Dp
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Validation: Wind Tunnel

e Open Loop:
o Flap can compensate for oscillations
in lift force
o Piezo and Rubber actuators tested
e Closed Loop:

o Flap control can reduce fluctuation in
the lift force

o Reduction up to 60 % reported

Percentage reduction in standard Deviation of Cl [%]
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Results: does it do something?

e Simulations on 5 MW NREL
reference turbine.

o Flap sections of 6.3 m (10%)

Inflow by pitot tube sensors, 0j,j Vi,j
o1, 2, or 3 flap sections '

| "\ o
)

=

e Wind Conditions:

o Stochastic Wind: Mann box,  qor speed, w S
according to IEC 61400-1 pr -~

o Wake situation: DWM model >
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Cut-In, Rated, Cut-Out Wind Speed

o Combination + traditional

3m/s, 11.4 m/s, 25 m/s

Cut-In, Rated Rotor Speed

8.9 rpm, 12.1 rpm

= ?P'Mﬂ- Table 1-1. Gross Properties Chosen for the NREL 5-MW Baseline
 Flap Control, based-on". — ind Jurbine

. ' % ating 5 MW
. i Blade root b |Rotor Orientation, Configuration Upwind, 3 Blades
O E I a Stl C Se n SO rs (SG) i I Control Variable Speed, Collective Pitch
. ‘ Drivetrain High Speed, Multiple-Stage Gearbox
@) InﬂOW sensors (Pltot) . Rotor, Hub Diameter 126 m, 3 m
. » Hub Height 90 m

Rated Tip Speed 80 m/s
Overhang, Shaft Tilt, Precone 5m, 5°, 2.5°
i Rotor Mass 110,000 kg
1 Nacelle Mass 240,000 kg
Tower Mass 347,460 kg

Coordinate Location of Overall CM

{-0.2m, 0.0 m, 64.0 m)
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Control Model

e Traditional control of a PRVS turbine, combined to TE flaps control:
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e Blade Pitch, generator torque:
o Power control
o Inflow slow variations

e Flap Control:

o Compensate for faster
variations in the inflow

Flap Control:
e Simple PI controllers

e Based on input from:
o ‘Structure’ sensors
(strain gauges along blade)
o ‘Inflow’ sensors
(Pitot tube)

Adaptive Trailing Edge Flap 21 July 2010
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Results: Stochastic Wind

e =~ S trailing edge flap
g (center position)

r; sensor strain gauge
(used to control flap)
" root strain gauge

e Control based on structure deformation sensor:
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One Two flaps per blade,12m Three flaps per blade,19m

flap,6m

#1 #1 B2 #1 #2 #3
Mean flap pos r; [m] 45 34 45 30 45 54
Sensor pos rs [m] 28 20 28 20 28 36
Kp [deg-KNm™']/ 1 [s] | 0.044/0.05 |0.071/0.32 | 0.032/0.04 | 0.060/0.35 | 0.034/ 0.10 | 0.025/ 0.03
Standard deviation 4.9 4.2 38 3.7 34 21

_flap deflaction [deg]
Fatigue reduction 25% 34% 37%
Pitot tube senser~ ——__

e e deformable trailing
N edge flap

e Control based on in flow sensor:

Xboom

One flap, 6m | Two flaps per blade, 12m | Three flaps per blade, 19m

#1 #1 #2 #1 #2 #3
Pitot tube, flap [m] 44 34 46 30 43 54
Kp [deg-KNm™]/ 1 [s] | -6.5/ 0.075 -7.0/0.125 -5.0/0.075 | -7.50.125 | -4.5/0.075 | -2.0/0.050
Fatigue reduction 30% 37% 40%
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Results: Stochastic Wind

e Combination of control sensors:

—_
W Ar

<Tm/s> K, =0 | <7Tm/s> K, =1 | <11m/s> <18m/s=>
Reduction in (Figure 6) (Figure 6) (Figure 8) (Figure 9)
Max blade1, flapwise root moment 10% 6% 15% 24%
Max tower, flowwise root moment 8% 3% 7% 15%
Blade1, flapwise fatigue load reduction | 38% 36% C46% ) 487
Tower, flowwise fatigue load reduction | 33% 30% 20% 33%
Pitch rate, standard deviation n‘a n'a 10% 18%
Mean power prod. (—loss) without flaps | 1375KW 1375KW 4694KW 5291KW
Mean power prod. (—loss) with flaps 1364KW 1395KW 4682KW 5300KW
Percent change in power production -0.8%  +1.5% -0.2% +0.2%
o= 220 225 230 235 240 245 250 255 260
= E40
@= r 1 ! . ; !
= e : = :
£201°
5
E 9
Zsh | | | | |
82 : z in : z
% ° & : : £
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Results: Wake

e Single Flap Section (6.3 m), Dynamic Wake Meander model:

éénsor [uﬁff] material | power flap control | flap control | flap control
control only | A B C

param.

“Blade f-lapwise root moment [-kNm]

Yaw moment [kNm] 4968 (0.0%) | 2027 2164 17

Tower flowwise root mom. [kNm]

Mean electrical power [kKW] - 4746

(-0.9%) (-1.8%) (-2.0%)
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Results: Stability

Aim:
e Aeroelastic instabilities: Flutter and Divergence
o No problem on actual WT (2x)
o What if ATEF modifies stability limits? |
« Develop a tool to determine stability limits of a D Y
section equipped with ATEF control. )

Method:
e Simplified Model:

2D section, attached flow (potential model),
simple controller

e Eigenvalues analysis:
o Set of Diff.Eq. linearized, matrix formulation
o Generalized Eigenvalue problem g

o Eigenvalues describe frequency and damping of , .
the system modes

& TE/Ié,
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Results: Stability

=) FLAP AFFECTS STABILITY LIMITS <=3

e Limits lowered by control.

e Not trivial dependence on:
o Structural proprieties
o Control algorithm and gain
o Measurement point

o Time lag

» Good News: High limit for not
controlled flap (light, stiff)

Control stop does not jeopardize
stability

22 Risg DTU, Technical University of Denmark
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How to make it for real?

Input Sensors:

e Structural deformation:
o Strain gauges along the blade

e Inflow sensor:
o 5-hole Pitot’s tube {
o Pressure difference -
o [Maybe one day...]

Risg DTU, Technical University of Denmark
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How to make it for real?

Flap Actuators:

» Piezoelectric plates
o Continuous deformation shape
o Fast, stiff, light, etc.
o But... out of lab? Fragile...

24 Risg DTU, Technical University of Denmark
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How to make it for real?

Flap Actuators:

Vv,
A%%E’e*

SANAVINE

VTS,

e Rubber Trailing Edge Flap
o Cont. deformation shape

o Compressed air through
chambers

o Currently under test...

e R,

— upper system sy
upper syste L9

W\ lower system e

/
Pressure valves/

/
Pressure tubes /
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First full scale test (preview)

o ...still a lot to do...
e First full scale test campaign:
o Vestas-V27 (225 kW, 27 m diam.)
o February 2010 (outside...Denmark...)

» Prescribed flap motion: limited flap
deflection, but positive results!

o Clear effect on Blade Root Moment
o Measured spectra close to simulated

[D. Castaignet et al.; Results from the first full scale wind
turbine equipped with trailing edge flaps
28th AIAA Applied Aerodynamics Conference ]

10° b

o

3
Normalized blade root flap mement spectral density [-]

TEF actuation frequency

Normalized blade root flap moment spectral density [-]

o
*

Blade 1

Blade 1 1% flapwise
Blade 2
Blade 3

1% edgewise

Blade 2
Blade 3
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Normalized frequency [-]

1 1
10”° 10
Normalized frequency [-]




Future...

To-do list...
e Full Scale Test:
o Keep on trying...

o Different combination of sensors/actuators,
controllers, ...

e Design investigations:
o Validate full 3D model vs. CFD

o More advanced control strategies (MPC, MIMO,
Syst.Id., ...)

o New concepts for sensors/actuators (reliability)

O ...

To conclude...

e Simulations have shown very promising results:
o Fatigue reduction around 45 % for blade root
o Up to 60 % in a wake situation

e To-do list still long...
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Thank you! Questions, comments...

Adaptive Trailing Edge Flap
Recent development within smart blades

Aeroelastic Design Program
Wind Energy Division

Leonardo Bergami

leob@risoe.dtu.dk
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