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Why are Epoxies Useful?

* Extremely good corrosion resistance -
* Extremely good chemical resistance

(acids, bases, solvents)
* Excellent adhesion to metals
* Good thermal resistance
* Low shrinkage

* Dimensionally stable under wide range of
conditions (e.g. temperature)

* Availability of versatile curing chemistries,
to tune properties (flexibility, curing properties,
waterborne formulations, etc.).
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Versatility of Epoxy Resins @

Easy Chain Adhesion Crosslinking
extensions

Toughness Chemical Inertness




Demands of the Market

Low exotherm @nge@

Adjustable pot life Fast cure response

Light Weight ~<Crack Resistance>

S Dow 2
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Longer Pot Life Fast Infusion

Gatlg @ Stable viscosity

Controllable pot life Low viscosity




Goal
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* Provide toughness to epoxy thermosets but not at the expense of processibility and

other key performance attributes for the applications of interest

Processibility: high viscosity, rate of cure, component compatibility, etc.

Performance attributes: Tg, modulus, adhesion, water uptake, solvent resistance, etc.

Applications: Protective coatings (liquid and powder), adhesives, composites including

wind turbine blades




Overview of Toughening Approaches
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Overview of Toughening Approaches

<>

(
>

Flexibilization Plastisizer 1 Modulus
* Decrease in backbone stiffness
* Decrease in crosslink density
* Uses plasticizers and diluents <
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Introduction to Amphiphilic BCP Technology

Copolymer Cured epoxy

curing

Bifunctional epoxy Curing agent

* Creation of rough spherical micelles before cure and refine structure duri
* Morphology at nano-meter length scale




BCP in Epoxy

in epoxy

vesicle wormlike micelle spherical micelle

Dean, PhD thesis, 2002



Morphologies Accessed in the Dilute Limit

5 wt.% copolymer

ey

ilayer

Sphere

} } i >

WEpoxvphi lic

vesicles wormlike micelles spherical micelles




Morphology Refinement During Cure

Uncured




Self Assembly vs. Conventional Macro-Phase Separation

Conventional Toughening (Example: CTBN Technoloqgy)
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Better defined structures, reduced volume%, reduced viscosities




Flexibilizers vs Tougheners
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Dow’s Amphiphilic Block
Copolymer Technology
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< Increased level of flexiblizers or tougheners

Fracture toughness is represented in units of MPa m%5




Composite Fabrication — Resin Infusion Process

VARTM (Vacuum Assist RTM)
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Guide to Suitability of Toughening Technology

Infusion Resin Needs in Composite Parts

|
I Reesin Inlet Fiber Preform Release Film Resin Outlet
Main Tool
i \ ~
Cost — Must Processing - Must
be affordable LYETEY (g be able to be
infused

Most of the properties of the composite like
stiffness and strength dominated by the fiber
— Key composite properties dominated by the

Matrix l

High Compressive Strength

Good Resistance to Good Bonding

Delamination to the fiber _ _
between plies Elastic Moduli (Low
! l values will lead to
Measured by Interlaminar Measured by fiber buckling)
Fracture Resistance or higher strength in '
Toughness (G,; and G;¢) off axis direction Measured using
tensile test




Performance in Clear Castings




Compact Tension Testing of Epoxies (ASTM D5045)
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Typical Epoxy Composite Infusion Formulation — Low Tg System

Property Untoughened System | Toughened System
DSC T, ("C) ( 88 ) ( 85 )
DSC Ty, (°C) 99 97
Tensile Yield Strength, MPa 68 (stdev = 0.6) 63 (stdev = 1.0)
Tensile Modulus, GPa 3.5 (stdev = 0.2) 3.1 (stdev = 0.04)
Tensile Strain @ Yield, % 4.3 (stdev =0) 4.3 (stdev = 0.4)
Tensile Strain @ Break, % (5.8 (stdev =0.7) )| 8.5 (stdev = 0.3))
Fracture Toughness (MPa m*0.5)| (0.96 (stdev=0.07) [ 2.59t02.80 )

« Significant improvement in Toughness (>150%)

« No change in cured T,

e Increase in elongation at break

rle reference

sample

& heaters »-//
omputer to monitor temperature

Properties measured at the neat plaque level ™ i regiato hoas ow




Toughening Mechanism




TEM Micrographs

Adjacent to crack wake

* Elongated copolymer
particles

* Orientation of copolymer
particles

* Cavitation

Some distance from crack wake

* Less or no elongation of
copolymer particles
* No orientation of
copolymer particles
* Cavitation

35mm

Some distance from
crack wake

*No elongation or
orientation of copolymer
particles

* No cavitation




Cavitation-Induced Matrix Shear Banding B

(a) initiation of a starting crack

(a)

(b) formation of a block copolymer cavitation zone at
the crack tip when the specimen is loaded

(b)

(c) expansion of the cavitation zone and initiation of a
— matrix shear banding zone at the crack tip when the

© hydrostatic stress is relieved by the cavitation

(d) crack propagates when the shear strain energy
builds up to a critical value, with a damage zone
surrounding the crack

(d)

|:| Cavitation . Shear Banding

(The sizes of the crack, cavitation and shear banding zone are not drawn to scale.)




Crack Tip Blunting
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Strain

* Areduction of yield stress implies that the plastic deformation ahead of the crack tip
IS easier

 Localized plastic deformation at the crack tip favors the crack tip being severely
blunted

* Under this condition, the strain energy release rate is greater resulting in a higher K,
value

Kinloch, A. J.; Williams, J. G. J. Mater. Sci. 1980, 15, 987.



Composite Processing Attributes of the BCP




Filtration During Liquid Molding Processes

Fibers BCP

\ \
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Nano-sized domains exist between fibers = No filtration effect




Effect of BCP on Formulation Rheo-kinetics
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Effect of BCP on Formulation Rheo-kinetics
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Performance in Fiber Reinforced
Composites




Test setup

Monitor/Data
* Load
e Strain

 Temperature
* Cycles to failure




Fatigue Results @ Composite Level s
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» Resin toughness translates into improved fatigue lifetimes especially at low- stress levels




2"d Generation Toughening




Effect of 2"d Gen Toughening on Properties — Clear Castings
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Moving from Clear Castings to Composites
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e VARTM Composites made using typical epoxy infusion formulation — 7 hour, 70 C cure

e No major issues observed such as filtration etc.




Fatigue Life Improvement @ Composite Level
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Summary and Conclusions
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* Block copolymer technology offers an opportunity to change the viscosity-Tg-toughness

balance in epoxy resin infusion systems
» Block copolymer toughening approach has advantages in wind turbine blade

composite processing

* Low viscosity
* No filtration

» Block copolymer toughening has a positive influence on composite fatigue
« Over 1 decade improvement in composite fatigue life obtained through Dow’s 2

generation toughening
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