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C) Summary of Reliawind

*EU funded FP7 R&D project 10 organisations involved
«€7.7M total funding *3 years
*€5.5M EU funding

Aims:
*Improve general understanding of wind turbine and farm reliability

*Develop reliability models specific to wind turbines

*Increase MTBF *Increase Availability
*Decrease MTTR *Decrease Cost of Energy
Important Onshore == Ciritical Offshore
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Partners: -
1. Gamesa _ Wind Turbine
7 Ecotechia ) Manufacturers
3. LM Glasfiber )
4. Hansen Transmissions

Component
5. ABB Machines & Drives ” Manufacturers
6. SKF UK -
7. Garrad Hassan 7
8. RELEX . Expert
9. Durham University Knowledge
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© \ Availability & Reliability %

Bl

 Mean Time To Failure, MTTF
 Mean Time to Repair, or downtime MTTR
* Logistic Delay Time LDT
 Mean Time Between Failures,

MTTF = MTBF

MTBF=MTTF+MTTR+LDT
o Failure rate, A A= 1/MTBF
e Repair rate, u u=I1/MTTR

MTBF=MTTF+MTTR=1/A +1/ u
 Manufacturer’s or Inherent Availability,
A=MTBF-MTTR)/MTBF=1—(A/u)

* Operational or Technical Availability,
A, =MTTF/MTBF < 1-(A/u)

« Typical UK values

— Operational or Technical Availability 97%,
mm — Manufacturer’s or Inherent Availability 98%
VIU)urham
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@) Cost of Energy, COE i

WIND

» COE, £/kWh=
O&M+ {[(ICC*FCR) + LRC]/AEPnet}
— O&M=Cost of Operations & Maintenance, £
— ICC=Initial Capital Cost, £
— FCR=Fixed Charge Rate, interest, %

— LRC=Levelised Cost of Replacement, replacing unavailable
generation, £

— AEP=Annualised Energy Production, kWh
o COE, £/kWh =
O&M(A, 1/u) + {[(ICC*FCR) + LRC(A, 1/1)]/AEPnet(A(u, 1/2)}
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@3 Cost of Energy, COE B

* Reduce failure rate, A,
Reliability MTBF, 1/4, increases and
Availability, 4, improves

* Increase repair rate, (,
Downtime MTTF, 1/u, reduces, and
Availability, 4, improves

 Therefore reduces COE

W utam
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Suﬁm) Trend in Turbine Failure Rates e
with time
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European Wind Turbine Subassembly Failure Rates from 1993-2005

ReliaWind’
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& 42>, Reliability & Downtime &

S"m‘gﬁ” ISEr Subassemblies, EU

ISET Pivot Diagram Failure Rate and Downtime from 2 Large Surveys of European Wind Turbines
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failure intensity [failures / year]

failure intensity [failures / year]

Figure 4.4: Variation between the failure rates of generator subassemblies, in the LWK

U] ]
P Durham

University

School of Engineering

0.4 0.6 0.8 1.0

0.2

0.0

0.2 0.4 0.6 0.8 1.0

0.0

Reliability & Time, LWK
(Generators

LWK, E40, generator

4
8
>

3
&
[
E
[ °
. (o]
*
.
-
* *
Thdustral range ||
T T T T T T
0 100 200 300 400 500
total test time [turbines * year]
LWK, V27/225, generator
- 4
[
2
o
i H
h <
T
2
| ©
*
industrial range L
T T T T T
0 100 200 300 400

total test time [turbines * year]

failure intensity [failures / year]

failure intensity [failures / year]

0.2 0.4 0.6 0.8 1.0

0.0

1.0

0.8

0.6

0.4

0.2

0.0

LWK, E66, generator

2
@
g
~
- @
s
hel
2
d g
[}
El
3
@
L]
¥ ndustralTangs
T T T T T
0 20 40 60 80
total test time [turbines * year]
LWK, V39/500, generator
- 4
©
S
7 ]
£
b
3
J Iy
o
3
8
B *
industrial range ||
T T T T T T
0 100 200 300 400 500

total test time [turbines * year]

population of German WTs, using the PLP model.

The upper two are low speed direct drive generators while the lower two are high speed
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ReliaWin

17 of 25



SUPERGEN
WIND '

U] ]
P Durham

University

School of Engineering

failure intensity [failures / year]

failure intensity [failures / year]

1.0

0.4 0.6 0.8
1

0.2

0.0

0.2 0.4 0.6 0.8 1.0

0.0

Reliability & Time, LWK

Gearboxes

LWK, TW600, gearbox

\ actual elapsed time: 12 years

industrial value

_

T T T T

0 100 200 300

total test time [turbines * year]

LWK, N52/N54, gearbox

. g
ES
~
s
£
3
|
L3 ©
E
°
° @
L
T industrial value
T T T T T T
0 20 40 60 80 100

total test time [turbines * year]

failure intensity [failures / year]

failure intensity [failures / year]

0.2 0.4 0.6 0.8 1.0

0.0

0.2 0.4 0.6 0.8 1.0

0.0

LWK, V39/500, gearbox

©
©
ES
]
£
3
g
[0}
BE
|53
N ©
- * l
/ . . Tnd¥stral value
T T T T T T
0 100 200 300 400 500
total test time [turbines * year]
LWK, Micon M530, gearbox
4
3
>
o
@
£
3
g
o
E
E

industrial value ———
/

T T T T T

0 50 100 150 200

total test time [turbines * year]

PLP model, in the LWK population of German WTs.

T

250

Figure 4.5: Variation between the failure rates of gearbox subassemblies, using the

ReliaWin

18 0of 25



2

SUPERGEN )

Reliability & Time, LWK

ReliaWin

e Electronics
LWK, E40, electronics LWK, E66, electronics
24 g 2 £
s : L ;
g H 8 3
(] 3 o
he industrial range ;@
o | industrial range
© T T T T T T O —
0 100 200 300 400 500 e T T T T
. X 0 20 40 60 80
total test time [turbines * year]
total test time [turbines * year]
LWK, TW 1.5s, electronics
o |
= 4
3 o
R g
2 9| . 53
& ° L
2 . |z
(5 Vf, ©
5 <]
é N | * ]
3 ©
8 )
o industrial range
© T T T T T T
0 10 20 30 40 50
total test time [turbines * year]
Figure 4.6: Variation between the failure rates of electronics subassemblies, or converter,
using the PLP model, in the LWK population of German WTs.
. The upper two are low speed direct drive generators with fully rated converters while the lower
AR two are high speed indirect drive generators with partially rated converters.

P Durham

University

School of Engineering

19 of 25



(6 ) Reliability of Electronics, ReliaWind

UPERGEN
Important Root Causes

WIND ‘

1.Components 2. Environmental conditions
*Stochastic variation of the wind
*Diurnal variation of the weather
*Geographical location

Connector 3%

| Semiconductor

| 21%

3. Control
*Excessive 1/0 from converters
eUncoordinated Alarms from

. R excessive I/0
Failure root cause distribution e Fal 1 )
for power electronics alSC alarms causmg unnecessary

from E Wolfgang, 2007 trips
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svﬁm) Downtime of Wind Turbines Relain
Germany 1994-2004
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Variable Load of Wind Power RelaWind

Line Side Inverter

Load Conditions in Wind Turbine Inverters SEMIKRON
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Variable Load of Wind Power
(Generator Side Inverter

Load Conditions in Wind Turbine Inverters
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Definitions of Availability are open to interpretation
Unreliability > 1 failure/turbine/year is common
Unreliability increases with turbine size
Such unreliability will be unacceptable offshore
Offshore we need unreliability < 0.5 failure/turbine/year
Unreliability concentrated mainly in the Drive Train including electrics
Some unreliable subassemblies are surprising:

— For example gearboxes are not unreliable

— But gearbox failures cause large downtime and costs

— But electrical parts are unreliable

— Cause less downtime but significant costs, their downtime will increase
offshore

For electrical parts the root causes from these surveys are not clear:
— Components
— Environmental conditions
— Controls

But the highly variable loading on turbines is clearly a factor

And false alarms are almost certainly a factor

Pre-testing is essential to eliminate early life failures
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