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Public safety
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Public safety
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Which failure probability is allowed?

Failure is not an option.

Gene Kranz, during the (movie of the) rescue of the Apollo 13, 
1969.

Failure is an option, we just don’t want it to happen very often.

Dick Veldkamp, 2006.

How often may be set by:

public safety considerations

economic considerations
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Public safety: small failure probability required

Guidelines/standards: design for p = 10-5 per year (component); even 
lower values may be required.

Can we prove that we achieve this with statistics?

Dutch Handbook for Risk Assessment of Wind Turbines
p = 6.3×10-4 (expected value, wind turbine)

p = 8.4×10-4 (95% reliability, wind turbine)
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Are new blades safer?

A new blade has annual failure probability pfail = p

Probability of having n = 0 failures after N years:

P0 is “amount of luck”. Allow maximum amount of luck, then:

Example: N = 5000 wind turbine years without failure, P0 = 0.05, then p < 
6.0×10-4
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Are new blades safer?
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Why probabilistic methods?

Low annual failure probability demanded.

We cannot prove with data from actual turbines that blades have a 
failure probability at the design level of p = 10-5 (300,000 turbine 
years needed) 
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Economic reasons for probabilistic design

Competition with other energy sources

Competition with our colleague manufacturers

Hence: blades must be just strong enough (and no stronger)
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Economic reasons
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Why probabilistic methods?

We cannot prove with statistical data from actual turbines that blades 
have a failure probability at the design level of p = 10-5 (300,000 
turbine years needed) 

Economic considerations.
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Design method 

How large γf and γm must be is determined by probabilistic 
considerations: which failure probability is allowed?

Failure probablity found by examining the limit state function Z(x) = 
R(x) – S(x) as function of γf and γm
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Limit state function Z(x) = R(x) – S(x)

Resistance R depends on:
Fatigue strength

Test probe fatigue strength

Stress factor (reduction of strength due to sequence effects)

Manufacturing tolerances

Accuracy of design methods

…

Load S depends on:
Wind climate (speed, turbulence, shear)

Wave climate

Controller settings

…
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Probabilistic design: variation in Z(x) = R(x) – S(x)
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Monte Carlo: 100.000 experiments

1. Build a turbine

2. Watch it for 20 years

3. Result (failure yes/no)

Failure probability

2. Simulate (e.g.) wind load 
and blade strength by
Monte Carlo analysis

‘throwing dice’

1. Design a turbine
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Example: base case

NM92/2750-70 Pitch Regulated Variable Speed

IEC II design for and IEC class II site

Wind speed: Udesign = Usite = 8.5 m/s at hub height

Turbulence intensity: Idesign = 18%, Isite = 16% + 2% for windfarm
wakes 

Wind spectrum shape: Mann’s Γdesign = 3.9 (Kaimal), Γsite = 3

Total safety γ = γfγm = 1.5
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Annual failure probabilities found

Edge moment: p1 = 4.5×10-6

Flap moment: p1 = 5.4×10-5 

Handbook: p1 = 6.3×10-4
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Explanation of difference

Turbines are better now

Extreme failures are not considered

Lightning strike is not considered

Optimism in estimation of distribution
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Probabilistic design: variation in Z(x) = R(x) – S(x)
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Distribution of variation in limit state function Z(x)
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Required safety factor for target p1 = 10-4 per year

Flap momentEdge momentParameter known 
exactly

1.391.26Test probe fatigue 
strength

1.331.18Stress factor (load 
sequence)

1.401.27FEM

1.341.33Aerodynamic model

1.451.33None
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Economic optimum: interest rate
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Multiple failure locations
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Economic optimum: number of failure locations
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Future work

Common failure database?

Fatigue testing and modeling 

Aerodynamic research

More insight into FEM: blind FEM testing, stochastic FEM?
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Details?
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Details:
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